

The New Senior Secondary
Curriculum for Sierra Leone

This subject syllabus is based on the National Curriculum
Framework for Senior Secondary Education. It was prepared
by national curriculum specialists and subject experts.

Subject Syllabus for Applications of Mathematics for Coding
Subject stream: Mathematics and Numeracy

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 1

Curriculum elements for Applications of Mathematics (Coding) – an applied subject

Subject Description
The Applications of Mathematics (Coding) subject aims to provide students with the opportunity to combine the study of aspects of mathematics with
computer programming. It is designed to offer students with practical experience in using computer programming techniques and skills to solve
problems that can be set up as mathematical models.

Rationale for the Inclusion of Applications of Computer Mathematics (Coding) in the Senior Secondary
School Curriculum
Applications of Computer Mathematics (Coding) is an innovative subject at the forefront of emerging trends in technology such as Artificial Intelligence
(AI), the Internet of Things (IoT), and Big Data and Blockchains. These trends - many of which are yet less known about, will make a huge impact on
digital societies in general and digital economies in particular. To keep up with these trends, the curriculum of Sierra Leone needs to be positioned
amongst the best in the world to ensure that Sierra Leonean youth can develop the skills to participate and succeed in the 21st century.
With this course providing strong foundations through problem solving in building computational thinking such as decomposition, abstraction and
algorithm design, it takes its place in the senior secondary school curriculum as a strong contributor both to personal as well as national progress and
development. Students will acquire critical thinking skills which will help them to function in a technological world, and easily adapt to any challenges
they face.

Applications of Computer Mathematics (Coding) is taught through a combination of mathematical rigour and experiential learning. It offers many
advantages to students who participate and successfully complete the course, and therefore deserves its place in the senior secondary school
curriculum.

General Learning Outcomes
At the end of the course, students will be able to:

• identify the characteristics and functions of a computer

• identify the components and functions of a computer system

• outline the safe use of computers and recognize its role in society

• develop confidence in using the Windows Operating System

• competently use the internet for research

• use a specified programming language and programming environment

• given a problem, solve it using the Problem-Solving method

• understand decomposition and abstraction as applied to programming

• define a problem and understand what is required to solve it

• develop an algorithm and represent it using pseudocode and a flowchart

• develop code by using the programming concepts of the specified programming language

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 2

• write programs using control structures, e.g. iteration, to control program flow

• write programs using data structures, such as arrays, to store data in an organised and efficient manner

• write programs using subroutines (procedures/functions) to improve the organisation and readability of a program

• use searching and sorting techniques in solve problems

• test and debug programs by identifying the cause of errors and exceptions, and correcting them

• demonstrate an understanding of how computer programs are implemented and maintained

• demonstrate an understanding of the skills acquired by completing an extended project

Subject Content Outline by Broad Themes & Specific Topics

SSS 1 SSS 2 SSS 3

Computer systems

• Characteristics and Functions of Computers

• Components of a Computer System

• Safe Use of Computers

• Role of Computers in Society

Essential computer skills

• Introduction to the Windows Operating
System

• Introduction to Computer Applications
Software

• Basic Keyboard and Mouse Skills

• Introduction to Using the Internet for
Research

Introduction to programming

• Computer Programs

• Programming Languages and the
Programming Environment

• Syntax and Syntax errors

• Hello World!

•
Problem solving and programs

• Problem Solving Method

• Algorithms

Programming concepts II

• Data Types

• Operators

• Order of Operations

• Strings

• Control Structures

• File Handling

Data structures and arrays

• Data Structure Concepts

• Static and Dynamic Data Structures

• Arrays

Programming mini-projects: Using the
problem-solving method

• Defining

• Designing

• Coding

• Testing and Debugging

Subroutines: procedures and
functions

• Subroutine Concepts

• Difference Between Procedures and
Functions

Programming the extended
project: using the problem-
solving method

• Defining

• Designing

• Coding

• Testing and Debugging

• Implementing

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 3

• Control Structures

• Decomposition

• Abstraction

Programming concepts I

• Keywords

• Variables and Constants

• Identifiers

• Assignment

• Comments

• Data Types

• Operators

• Order of Operations

• Strings

• Data Structures

• Exception Handling

• Input/Output

Programming mini-projects: Using the
problem-solving method

• Defining

• Designing

• Coding

Flow of program: control structures

• Introduction to Program Flow

• Sequence

• Selection

• Iteration

Programming mini-projects:
Using the problem-Solving method

• Defining

• Designing

• Coding

• Testing and debugging

• Advantages of Using Subroutines

• Using Parameters in Subroutine

• Subroutine Operations

• Built-in and User-Defined Subroutines

Programming mini-projects:
Using the problem-solving method

• Defining

• Designing

• Coding

• Testing and Debugging

Searching

• Searching Concepts

• Linear Search

• Binary Search

• Compare Searching Algorithms

Sorting

• Sorting Concepts

• Bubble Sort

• Selection Sort

• Insertion Sort

• Compare Sorting Algorithms

Programming mini-projects: Using the
problem-solving method

• Defining

• Designing

• Coding

• Testing and De-bugging

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 4

Structure of the Syllabus Over the Three Year Senior Secondary School Cycle

 SSS 1 SSS 2 SSS 3

Term 1 Computer systems

• Characteristics and Functions of
computers

• Components of a computer system

• Safe Use of Computers

• Role of Computers in Society

Essential computer skills

• Introduction to the Windows
operating system

• Introduction to computer
applications software

• Basic keyboard and mouse skills

• Introduction to using the internet for
research

Introduction to programming

• Computer programmes

• Programming languages and the
programming environment

• Syntax and syntax errors

• Hello World!

Programming concepts II

• Data Types

• Operators

• Order of Operations

• Strings

• Control Structures

• File Handling

Data structures and arrays

• Data Structure Concepts

• Static and Dynamic Data Structures

• Arrays

Programming mini-projects: Using the
problem-solving method

• Defining

• Designing

• Coding

• Testing and debugging

Programming the extended
project: Using the problem-solving
method

• Defining

• Designing

• Coding

Term 2 Problem solving and programs

• Problem solving method

• Algorithms

• Control structures

• Decomposition

• Abstraction

Programming concepts I

• Keywords

• Variables and constants

Subroutines: procedures and functions

• Subroutine Concepts

• Difference Between Procedures and
Functions

• Advantages of Using Subroutines

• Using Parameters in Subroutine

• Subroutine Operations

• Built-in and User-Defined Subroutines

Programming mini-projects:

Programming the extended
project: Using the problem-solving
method

• Testing and debugging

• Implementing

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 5

• Identifiers

• Assignment

• Comments

• Data Types

• Operators

• Order of operations

• Strings

• Data structures

• Exception handling

• Input/Output

Programming mini-projects: Using
the problem-solving method

• Defining

• Designing

• Coding

Using the problem-solving method

• Defining

• Designing

• Coding

• Testing and debugging

Term 3 Flow of program: control structures

• Introduction to Program Flow

• Sequence

• Selection

• Iteration

Programming mini-projects: Using
the problem-solving method

• Defining

• Designing

• Coding

• Testing and debugging

Searching

• Searching Concepts

• Linear Search

• Binary Search

• Compare Searching Algorithms

Sorting

• Sorting Concepts

• Bubble Sort

• Selection Sort

• Insertion Sort

• Compare Sorting Algorithms

Programming mini-projects: Using the
problem-solving method

• Defining

• Designing

• Coding

• Testing and debugging

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 6

Teaching Syllabus
Topic/Theme/Unit Expected learning

outcomes

Recommended

teaching methods

Suggested resources Assessment of learning

outcomes

Year 1/Term 1

COMPUTER SYSTEMS

• Characteristics and
Functions of
Computers

• Components of a
Computer System

• Safe Use of
Computers

• Role of Computers in
Society

Students will be able to:

• State and explain
characteristics and
functions of computers

• outline the architecture
of the central processing
unit (CPU)

• describe the functions of
the arithmetic logic unit
(ALU), the control unit
(CU) and the registers
within the CPU

• identify and describe the
functions of input and
output devices

• describe primary
memory

• describe secondary
memory

• define and explain the
terms: hardware,
software, network

• understand and apply
the safe use of
computers

• explain the role of
computers in society

Ask students to write
down at least four things
they know about
computers, their
characteristics (e.g.,
speed, accuracy,
versatility, reliability, etc.)
and functions (e.g., input,
processing, output,
storage, etc.)

Discuss the
characteristics and
functions of computers
with students

Illustrate computer
architecture using a block
diagram showing the
relationship between the
elements of the CPU,
input and output, and
storage.

Discuss the functions of
each constituent part of
the CPU

Explain briefly how input
and output devices
convert data into
acceptable form within
the computer system.

Textbooks
Computers
Internet devices and/or
pictures showing hardware,
software, and input/output
devices

Students are able to:

• explain to someone who
has never used a
computer what it is and
how it works

• write a report / make a
mind-map of the
characteristics and
functions of a computer

• reproduce a block
diagram showing the
architecture of the central
processing unit (CPU)

• describe the functions of
the ALU, CU and registers

• identify input and output
devices and describe their
functions

• distinguish between RAM
and ROM, and their use in
primary memory

• list and describe the
different devices providing
secondary memory

• explain the advantage and
disadvantages of each
type of memory

• write statements
explaining the given terms

• explain to an absent friend
the risks and remedies of
computer use

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 7

Discuss and show
(pictures of) input devices
(e.g. keyboard, mouse,
scanner, touch screen)
and output devices (e.g.
monitor, projector, printer,
headphone, speaker,
printer, etc.)

Explain the difference
between random access
memory (RAM) and read-
only memory (ROM), and
their use in primary
memory

Discuss with students
why secondary memory
might be needed.

Show the need for
persistent storage and
the different devices
which have been, and are
currently used for storage

Briefly discuss the terms
and show how they fit
within a computer system

Discuss the risks related
to the use of computer
equipment (e.g., to the
back wrists and eyes)

Discuss some simple
strategies for minimising
these risks

• take part in group
discussion about the role
of computers in society.
Reflect on the good/bad
aspects of computer use

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 8

Discuss the merits and
demerits of computers in
society, e.g., although
they are used to improve
productivity and solve
problems in all fields of
study and work, e.g.,
education, health,
business, manufacturing,
etc., they are also used
for cyberbullying and
cybercrimes

ESSENTIAL
COMPUTER SKILLS

• Introduction to the
Windows Operating
System

• Introduction to
Computer
Applications Software

• Basic Keyboard and
Mouse Skills

• Introduction to Using
the Internet for
Research

Students will be able to:

• understand and apply
the basic principles of
using the Windows
operating system:

• start and shut down the
computer

• change computer
settings (e.g., display,
colour, accessibility
options etc.)

• resize, move and scroll
windows

• create, name and
manage files and folders

• manage hardware such
as printers, scanners,
mouse, digital cameras
etc.

Demonstrate and guide
students to use the
various components of
Windows

Demonstrate and guide
students to use the
features of a computer
application software such
as a word processing
application

Demonstrate and guide
students to use the
keyboard and mouse to
develop acceptable
speed and accuracy.

Demonstrate and guide
students to access the
internet and find
information on a topic

Guide students to
evaluate the website

Computers (with Windows
OS and typical software
applications)
Internet
Printers
Textbooks
Activity sheets

Students are able to:

• demonstrate they can
follow the basic principles
of using the Windows
operating system in
practice

• demonstrate they can
create, edit, save, and
print documents of
computer applications

• demonstrate they can use
the keyboard and mouse
effectively

• demonstrate they can
access the internet safely,
and validate the
information found

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 9

• create, edit, save, and
print documents of a
computer applications
software

• develop basic
keyboarding and mouse
use

• access the internet and
find and evaluate
information

information, e.g., by
checking the domain
name (reputable
extensions include .edu,
.ac, .gov etc.), or cross-
checking with another
site, to assess whether
the source of the
information can be
trusted

INTRODUCTION TO
PROGRAMMING

• Computer programs

• Programming
languages and the
programming
environment

• Syntax and syntax
errors

• Hello World!

Students will be able to:

• describe a computer
program, its uses, and
features

• describe programming
languages and outline
their main features

• describe the features of
low-level and high-level
languages

• describe programming
language environments

• develop familiarity with
the programming
environment of the
specified programming
language

• identify basic syntax of
the specified language

• use basic syntax to write
a first program in the

Show a short computer
program on the
whiteboard, e.g., a
program which shows a
message indicating the
result of a calculation on
the screen

Use the program to
explain the uses of a
computer program to
solve a perceived
problem (e.g., in
education,
communication, sports,
entertainment, business,
etc.)

Discuss the features of a
familiar computer
program, e.g. a mobile
app or social media site

Explain what a
programming language is
and discuss their main

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• Text editor and specified
language
implementation

• Internet access

• Printers

• Textbooks

• Activity sheets

Students are able to

• research on the internet
the uses of computer
programs

• choose and outline the
features of a computer
program they use in their
studies (e.g., an office
application such as MS
Word etc.)

• describe and explain

features of a programming

language

• create a mind map of low-

level and high-level

programming languages,

giving examples, features

and advantages and

disadvantages of each

type

• answer questions such
as:
“What is the language
environment needed to
program in …?”

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 10

specified programming
language

• Identify and correct
common syntax errors in
computer program

features, e.g., simplicity,
abstraction, efficiency,
etc.

Introduce the two types of
languages. Guide
students to research on
the internet the features
of both types of
languages, giving the
advantages and
disadvantages of each
type

Discuss the different
programming
environment whether a
text editor and the
specified language
implementation or an
integrated programming
environment (IDE)

Demonstrate the features
of the programming
environment of the
specified language

Use statements to
demonstrate some of the
basic syntax of the given
language, e.g., for input
and output (I/O)

Guide students to use the
programming learning
environment to write a
simple program (written
using Python, for

“What is the difference
between a text editor and
an IDE?”
“What else is needed with
a text editor for it to run?”

• Answer questions such
as: What is syntax used
for?”

• identify and write
programs using basic
syntax

• correct any syntax error in
their programs

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 11

example) to print “Hello
World!” on the computer
screen

Use deliberate errors to
demonstrate how the
specified programming
language deals with them

Year 1/Term 2

PROBLEM SOLVING
AND PROGRAMS

• Problem Solving
Method

• Algorithms

• Control Structures

• Decomposition

• Abstraction

Students will be able to:

• understand the concept
of problem solving in
program development:

• define the problem

• design an algorithm
to solve the problem

• code the program

• test and debug the
program

• document the
program code

• implement and
maintain the program

• state and explain the
characteristics and uses
of algorithms

• describe the three
program control
structures of sequence,
selection, and iteration

• understand the concept
and need for
decomposition in
program development

Discuss with students the
problem-solving method
as applied to program
development

Write the steps (or
programming process) on
the board. Divide the
class into groups of 4/5
students

Give each group one of
the steps to research on
the internet and present
their findings

Ask the class to select
the most informative of
each step and write up as
notes.

Explain what an algorithm
is and the need for one in
problem solving

Discuss the
characteristics of
algorithms and show
simple everyday

• Computers

• Internet access

• Textbooks

• Activity sheets

Students are able to:

• list and describe each of
the steps involved in
writing a computer
program

• create a mind map of the
problem solving
(programming) process

• describe algorithms and
its use during problem
solving in computer
programming

• use given pseudocode
and flowchart to identify
control structures

• write a short report on
decomposition and why it
is needed in program
development

• explain and give
examples on abstraction
in everyday life

• give reasons for
abstraction in program
development

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 12

• understand the concept
and need for abstraction
in program development

examples using
pseudocode and
flowchart

Briefly explain the input,
process, and output
sections of the algorithm

Use simple everyday
examples of pseudocode
and related flowcharts to
discuss the three basic
control structures and
how they control the flow
of an algorithm

Show and discuss how
different algorithms and
resulting programs can
be used to address the
same problem

Use everyday examples
(e.g. planning a party or
holiday) to discuss a
problem is ‘decomposed’
or broken down into
smaller sub problem

Discuss how
decomposition helps
each sub problem to be
solved independently
from other parts of the
program

Explain abstraction as the
process of hiding
complex details from a

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 13

user

Give everyday examples,
e.g. talking to your friend
on a phone without
knowing how it connects
you to your friend

Discuss why abstraction
is needed in program
development

PROGRAMMING
CONCEPTS I

• Keywords

• Variables and
Constants

• Identifiers

• Assignment

• Comments

• Data Types

• Operators

• Order of Operations

• Strings

• Data Structures

• Exception Handling

• Input/Output

Students will be able to:

• identify the keywords of
the specified
programming language

• declare variables and
constants

• use standard naming
conventions to create
identifiers

• write assignment
statements for variables

• use comments in
programs for clarity

• understand and use the
basic data types

• integer

• real (fixed and
scientific notation)

• character

• string

• Boolean

Explain keywords in the
specified programming
language as reserved
words used only for the
purpose for which it was
defined – they cannot be
used for any other
purpose

Provide a table of the
reserved words, or
keywords of the language

Explain the difference
between a variable and a
constant.

Explain declaration of
variables and constants

Guide students to follow
the conventions of the
specified programming
language (e.g., Python) to
create identifiers or
variable names

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• Text editor and specified
language
implementation

• Internet access

• Printers

• Textbooks

• Activity sheets

Students are able to:

• make appropriate use of
the keywords of the
specified language

• translate mathematical

expressions into

programming expressions

by declaring variables and

constants, assigning

appropriate values, and

using standard naming

conventions

• add comments to

programs to aid clarity

• use given program, to

identify the appropriate

data types

• use given program, to

identify the correct

operators (arithmetic,

relational or Boolean)

• use given pseudocode

and flowcharts, to create a

program that uses the

correct operators

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 14

• understand and use the
arithmetic operators:

• addition

• subtraction

• multiplication

• real / float division

• integer division,
including remainder

• understand and use the
relational operators:

• equal to (=)

• not equal to (≠,)

• less than (<,)

• greater than (>,)

• less than or equal to
(≤,)

• greater than or equal
to (≥)

• understand and use the
Boolean operators:

• NOT

• AND

• OR

• use order of operations
in evaluating
mathematical and
Boolean expressions

• use basic string handling
techniques

• understand the concept

Demonstrate how to use
the correct syntax to
assign values to variables

Show how comments are
non-executable
statements added to a
program to make it easy
to understand and
maintain

Explain the different
variable data types
including how they are
declared using the syntax
of the specified language

Discuss with examples
what each data type
represents, e.g., string
represents a sequence
(or string) of characters,
“Hello World!”

Briefly explain the
different memory space
occupied by each
variable type

Demonstrate the various
operators, noting that a
calculation such as 11/2
would generate the
following values:
Integer division: the
integer quotient of 11
divided by 2
(11 DIV 2) = 5
Remainder: the

(arithmetic, relational or

Boolean)

• work in pairs to solve

mathematical and

Boolean expressions

using order of operations

• recognise and use basic

string handling techniques

in a given program

• recognise and explain the

use of data structures in a

given program

• use, access and amend

the one-dimensional array

data structure in a

program

• identify and interpret

exceptions in a given

program

• code input and output

statements

• list the expected output

from chosen input values

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 15

of data structures

• use a one-dimensional
array in a program

• understand basic
exception handling

• obtain user input from
the keyboard

• output data and
information from a
program to the computer
display

remainder when 11 is
divided by 2
(11 MOD 2) = 1

Demonstrate using
pseudocode how the
relational and Boolean
operators are usually
used together

Provide a written program
and ask students to
identify different
operators used in the
program

Demonstrate how to
evaluate mathematical
and Boolean expressions
using the standard order
for arithmetic calculations
(BODMAS) and the order
NOT, AND, OR for
Boolean.

Guide students to also
use brackets to change
priority of Boolean
operations

Demonstrate and guide
students to manipulate a
string using its length,
position and by extracting
a substring.
Demonstrate and guide
students to get the
character code for a
character and vice versa

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 16

Demonstrate and guide
students to perform
concatenation and string
conversion operations

Limit string conversions
to: string to integer, string
to real, integer to string
and real to string.

Introduce data structures,
e.g., one- or multi-
dimensional arrays and
explain how they used in
programs

Demonstrate and guide
students how to access,
add, delete, and loop
over the elements of a
one-dimensional array

Discuss the concept of
exceptions and
demonstrate using
examples how exceptions
are handled by the
specified programming
language

Demonstrate and guide
students to code for input
from the user and output
to the screen

PROGRAMMING MINI
PROJECTS:

Students will be able to:

• use the concept of

Guide students to write a
program to, for example,

• Computers

• Operating system

Students are able to

• use appropriate problem-

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 17

USING THE PROBLEM-
SOLVING METHOD
Defining
Designing
Coding

problem solving in
program development to:

• define the problem

• design an algorithm
to solve the problem

• code the program

add two numbers

Guide students to define
the problem by stating
what they are required to
do

Guide students to design
a solution using an
algorithm both in
pseudocode and
flowchart. They ask for
input from the user,
process the information
and output a message
giving the result of the
addition.

Guide students to code
the program using their
algorithm, making sure
they correct syntax errors
and handle exceptions
arising from their code

(usually Windows)

• IDE of specified
programming language

OR

• Text editor and specified
language
implementation

• Internet access

• Printers

• Textbooks

• Activity sheets

solving concepts to write a

program to solve a given

problem.

Problems include:

• adding three numbers

• finding the average of two

or three numbers

• calculating perimeter,

areas and volumes of

shapes etc.

Year 1/Term 3

FLOW OF PROGRAM:
CONTROL
STRUCTURES

• Introduction to
programme flow

• Sequence

• Selection

• Iteration

Students will be able to:

• understand the concept
of program flow

• describe and use the
three control structures
of sequence, selection,
and iteration

◦ sequence:
▪ a linear execution of

statements

Demonstrate using
pseudocode and
flowcharts how more
complex algorithms and
programs are written
using the three control
structures

Discuss sequential
control as the default
means by which a
program is executed as
used in the basic

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• Text editor and specified
language
implementation

• Internet access

• Printers

Students are able to:

• use given pseudocode,

flowchart, and program

source code to identify

and interpret control

structures

• use given pseudocode

and flowcharts, to write

code that uses sequential,

selection and iteration

control structures

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 18

◦ selection (conditionals):

▪ if/then
▪ if/then/else
▪ case
▪ Boolean logic

◦ iteration (loops):

▪ while
▪ for
▪ do/while
▪ repeat/until

programs to date

Explain how selection
control is used to execute
one or more statements if
a given condition is met

Guide students to
research the internet to
find out what iteration
control works (repeats a
statement a certain
number of times, or while
a condition is fulfilled)

• Textbooks

• Activity sheets

PROGRAMMING MINI
PROJECTS:
USING THE PROBLEM-
SOLVING METHOD

• Defining

• Designing

• Coding

• Testing and
debugging

Students will be able to:

• use the concept of
problem solving in
program development to:

• define the problem

• design an algorithm
to solve the problem

• code the program

• test and debug the
program

Guide students to work
independently to write a
program, for example to
find the larger of two
numbers.

Guide students to define
the problem by stating
what they are required to
do

Guide students to design
a solution using an
algorithm both in
pseudocode and
flowchart. They ask for
input from the use,
process the information
and output a message
giving the result of the
addition.

Guide students to code
the program using their

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• Text editor and specified
language
implementation

• Internet access

• Printers

• Textbooks

• Activity sheets

Students are able to:

• use appropriate problem-

solving concepts to write a

program to solve a given

problem.

Problems include:

• find the largest / smallest

number among three

numbers

• generate the 5 times

tables from 1x to 12x

• output the count of all
even numbers between a
user defined range of
numbers

• check whether a number
is prime or not
(composite)

• write error message when
input number is not 5 or 6

• etc.

• answer questions such
as:

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 19

algorithm, making sure
they correct syntax errors
and handle exceptions
arising from their code

Discuss with students
how their programs can
be improved Choose one
or two programs and
compare the code

Ask students to improve
their own programs in the
light of the discussion

Guide students to
improve the previously
written program by writing
code to validate input into
the program

• “How can we check that

the correct input has been

made by the user?”

• “What sorts of error

message can be given to

alert the user they have

given incorrect input?

• write new algorithms for

input validation of the

previously written

programs

• add input validation code

to their previously written

programs

Year 2/Term 1

PROGRAMMING
CONCEPTS II

• Data Types

• Operators

• Order of operations

• Strings

• Control structures

• File handling

Students will be able to:

• recall and extend use of
data types to include

• date/time

• records (or equivalent)

• define and use user-
defined data types
based on the specified
language’s built-in data
types.

• recall and extend use of
the arithmetic operators
to include:

Guide students to recall
the integer, real (fixed
and scientific notation),
character, string, Boolean
data types.

Introduce and explain
new data types for the
specified programming
language

Demonstrate how user-
defined data types can be
created by using the built-
in data types

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• text editor and specified
language
implementation

• Internet access

• Printers

• Textbooks

• Activity sheets

Students are able to:

• identify the new
programming techniques
from given pseudocode,
flowcharts and source
code

• create pseudocode,
flowcharts and source
code to demonstrate
understanding of the
advanced programming
techniques

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 20

• exponentiation

• rounding

• truncation

• recall and extend use
of the relational
operators:

• =, ≠, <, >, ≤, ≥

• recall and extend use of
the Boolean operators to
include:

• XOR

• recall and extend use of
order of operations in
evaluating mathematical
and Boolean
expressions to include
new operators

• recall and extend use of
string handling
techniques to include:

• string to float

• float to string

• date/time to string

• string to date/time.

• recall and extend control
structures to include:

• definite and indefinite
iteration

• nested selection

• nested iteration

• read from/write to a text
file

• read from/write to a

Guide students to create
their own data types

Review the various
operators: (+, –, , real/
float division, integer
division

Demonstrate using
pseudocode how the
relational and Boolean
operators are usually
used together

Review the NOT, AND
OR Boolean operators

Demonstrate and guide
students to use
arithmetic, relational and
Boolean operators, alone
and in combinations
within algorithms and
code containing selection
and iteration structures.

Review string handling
techniques including
string manipulation and
how to perform
concatenation and string
conversion operations

Review the following
conversions: string to
integer and vice versa,
string to real and vice

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 21

binary (non-text) file.

versa

Demonstrate and guide
students to perform the
new string handling
techniques

Review basic selection
and iteration control
structures

Use algorithms and code
to discuss how far and
wide loops are used for
definite and indefinite
iteration respectively

Demonstrate and guide
students to recognise
nested structures using
pseudocode and
flowcharts

Guide students to write
algorithms to show
multiple layers of nested
selection and iteration
constructs

Demonstrate and guide
students to input and
output via a text file

Demonstrate and guide
students to input and
output via a binary file

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 22

DATA STRUCTURES
AND ARRAYS

• Data Structure
Concepts

• Static and Dynamic
Data Structures

• Arrays

Students will be able to:

• improve understanding
of data structures

• differentiate between
static and dynamic data
structures

• understand and use one-
and multi-dimensional
arrays as examples of
data structures

Review the concept of
data structures

Give examples and uses
of the most commonly
used data structures,
e.g., arrays, linked lists,
stacks, queues, etc.

Discuss static and
dynamic data structures.

Guide the students to
work in pairs to give the
differences between
static and dynamic data
structures

Demonstrate using
algorithms and
programmes some basic
array operations, e.g.,
traverse, search, and
update

Demonstrate the
procedure required to
insert into and delete
elements from arrays

Guide students to write
algorithms and code for
operations in one- and
multi-dimensional arrays

 Students are able to:

• explain to a friend, the
most commonly used data
structures

• draw up a table showing
the differences between
static and dynamic data
structures

• write algorithms and code
to traverse, search and
update one- and multi-
dimensional arrays

• write algorithms and code
to insert into and delete
elements from one- and
multi-dimensional arrays

PROGRAMMING MINI
PROJECTS: USING
THE PROBLEM-
SOLVING METHOD

Students will be able to:

• use the concept of
problem solving in
program development to:

Guide students to work
independently or in pairs
to write a program, for
example to find the larger

• Computers

• Operating system
(usually Windows)

• IDE of specified

Students are able to:

• use appropriate problem-

solving concepts to write a

program to solve a given

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 23

• Defining

• Designing

• Coding

• Testing and
debugging

• define the problem

• design an algorithm
to solve the problem

• code the program

• test and debug the
program

of two numbers.

Guide students to define
the problem by stating
what they are required to
do.

Guide students to design
a solution using an
algorithm both in
pseudocode and
flowchart. They ask for
input from the use,
process the information
and output a message
giving the result of the
addition.

Guide students to code
the program using their
algorithm, making sure
they correct syntax errors
and handle exceptions
arising from their code.

Discuss with students
how their programs can
be improved. Choose one
or two programs and
compare the code.

Ask students to improve
their own programmes in
the light of the discussion.

Guide students to
improve the previously
written program by writing

programming language

OR

• Text editor and specified
language
implementation

• Internet access

• Printers

• Textbooks

• Activity sheets

problem.

Problems include:

• find the roots of the

quadratic equations

ax2 + bx + c (real roots

only)

• swap two variables’

values without using third

variable (Hint: use the

XOR operator)

• find the sum of individual

digits of a given positive

integer

• generate the first n terms

of the Fibonacci, (Hint:

use one-dimensional

array to store the series)

• answer questions such
as:
“How can we check that

the correct input has been

made by the user?”

“What sorts of error

message can be given to

alert the user they have

given incorrect input?

• write new algorithms for

input validation of the

previously written

programs

• add input validation code

to their previously written

programs

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 24

code to validate input into
the program.

Year 2/Term 2

SUBROUTINES:
PROCEDURES AND
FUNCTIONS

• Subroutine concepts

• Difference between
procedures and
functions

• Advantages of using
subroutines

• Using parameters in
subroutine

• Subroutine operations

• Built-in and user-
defined subroutines

Students will be able to:

• describe a subroutine
and its uses

• explain the difference
between procedures and
functions

• list and describe the
advantages of
subroutines

• describe the purpose
and functions of
parameters in
subroutines

• understand and apply
defining and calling
subroutines using
parameters

• understand and apply
passing data into
subroutine

• understand and apply
subroutines which return
a value

• understand and use both
built-in and user-defined
subroutines

Discuss how a subroutine
is a block of code that is
called from different
places from within a main
program or other
subroutines, and
sometimes returns a
value to the calling code

Explain how they are
used to simplify the
complexity of a program
(i.e. for decomposition)

Illustrate using examples
of algorithms and
programs

Explain the difference
between procedures and
functions and how they
are used in the specified
programming language

Discuss the advantages
of subroutines in a
program (e.g., improved
organisation of the
programme, increased
usability as the
subroutine can be called
from another sub-routine
programme, increased
readability for other users
of the code, etc.)

Students are able to:

• explain what a subroutine
is and what it is used for

• answer questions to
explain the differences
between procedures and
functions

• explain the advantages of
using subroutines

• write a brief report on the
purpose and functions of
parameters in subroutines

• write algorithms and
program to define and call
subroutines, using
meaningful identifiers,
passing data to and using
any return value from the
subroutine as appropriate

• write algorithms and
programs to use both
built-in and user-defined
subroutines

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 25

Guide the students to
research and make notes
from the internet the
purpose and functions of
parameters in sub-
routines

Demonstrate and guide
students to use
algorithms and programs
to define and call
subroutines. Show how
meaningful identifiers are
used which give an
indication of what the
subroutine is set up to do.

Ensure students
understand how to call a
sub-routine from the main
run of the program using
parameters

Demonstrate and guide
students to use
algorithms and programs
to pass data into a
subroutine.

Limit this to passing data
by value only (call by
value)

Demonstrate and guide
students to use
algorithms and programs
which return data from a
subroutine

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 26

Discuss how the calling
code uses the return
value in the main
program

Explain how they can
also be used, without
being declared as
variables, to call other
subroutines

Demonstrate and guide
students to use
algorithms and programs
to use the built-in
subroutines of the
programming language

Guide students to code
their own user-defined
subroutines to improve
the organisation and
readability of their
programmes

• Year 2 Students will be able to:

• use the concept of
problem solving in
program development to:

• define the problem

• design an algorithm
to solve the problem

• code the programme

• test and debug the
program

Follow previous
guidelines to guide
students to work
independently to write a
programme to solve a
given problem

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• text editor and specified
language
implementation

• Internet access

• Printers

Students are able to:

• use appropriate problem-

solving concepts to write a

program to solve a given

problem, by calling

appropriate built-in or

user-defined subroutines

Problems include:

• find the length of a string

input by user

• find both the largest and

smallest number in a list

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 27

• Textbooks

• Activity sheets

of integers

• swap the values of two

variables using a call by

value

• perform addition of two

matrices (provide method

to add matrices, if

needed)

• perform multiplication of

two matrices (provide

method to multiply

matrices, if needed)

• follow previous guidelines

to improve the quality of

written programs

Year 2/Term 3

SEARCHING

• Searching Concepts

• Linear Search

• Binary Search

• Compare Searching
Algorithms

Students will be able to:

• describe searching and
its uses in computer
programming

• understand and explain
how the linear search
algorithm works

• understand and explain
how the binary search
algorithm works

• compare and contrast
linear and binary search
algorithms.

Explain searching as the
action of locating an
element, called key, in a
set of objects. The result
of searching returns both
the presence (or
absence) and location of
the object

Use several versions of
the algorithms to identify
best, worst, and average
cases of searching
techniques in the
programming language

Guide students to
research the advantages
and disadvantages of

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• text editor and specified
language
implementation

• Internet access

• Printers

• Textbooks

• Activity sheets

Students are able to:

• give practical applications
of the search algorithms

• write algorithms and code
to locate the requested
object from a list of
objects

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 28

both algorithms

Use the research to
discuss how the two
algorithms compare with
each other

SORTING

• Sorting concepts

• Bubble sort

• Selection sort

• Insertion sort

• Compare sorting
algorithms

• describe sorting and its
uses in computer
programming

• understand and explain
how the bubble sort
algorithm works

• understand and explain
how the selection sort
algorithm works

• understand and explain
how the insertion sort
algorithm works

• compare and contrast
bubble, insertion and
selection sort algorithms.

Explain sorting as the
action of ordering a given
set of elements in a
particular order

Guide students to
research the advantages
and disadvantages of the
algorithms

Use the research to
discuss how the
algorithms compare with
each other

 Students are able to:

• give practical applications
of the sort algorithms

• write algorithms and code
to order a given set of
elements

PROGRAMMING MINI
PROJECTS:
USING THE PROBLEM-
SOLVING METHOD

• Defining

• Designing

• Coding

• Testing and De-
bugging

Students will be able to:

• use the concept of
problem solving in
program development to:

• define the problem

• design an algorithm
to solve the problem

• code the program

• test and debug the
program

Follow previous
guidelines to guide
students to work
independently to write a
programme to solve a
given problem

• Computers

• Operating system
(usually Windows)

• IDE of specified
programming language

OR

• text editor and specified
language
implementation

• Internet access

Students are able to:

• use appropriate problem-

solving concepts to write a

program to solve a given

problem. Problems

include:

• find the positions of 5

out of a given list of 10

elements (linear search)

• given a list of elements

and a key value, find i)

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 29

• Printers

• Textbooks

• Activity sheets

whether the key is

present ii) return the

position of key, or any

other appropriate

message (linear, binary

search). Which is more

efficient?

• given a list of 10

elements, display the

partially sorted list after

three complete passes

(Bubble sort)

• identify the number of

swaps required for

sorting a given list using

selection sort and

bubble sort, and identify

which is the better

sorting technique giving

reasons

The appropriate algorithm is
given in brackets

• Follow previous guidelines
to improve the quality of
written programs

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 30

Year 3/Terms 1 and 2

PROGRAMMING THE
EXTENDED-PROJECT:
USING THE PROBLEM
SOLVING METHOD

• Defining

• Designing

• Coding

• Testing and
Debugging

• Implementing

• Maintaining

Students will be able to:

• define a simple
programming problem

• design an algorithm to
solve a problem

• code the programme

• test and debug the
programme

• document the
programme code

• implement the
programme

• maintain the programme

Guide students to identify
what is known about the
problem and what the
desired result is
Guide students to
produce a written
agreement (specification)
that specifies the kind of
input, processing, and
output required

Guide students to design
the solution to the
problem by writing an
algorithm: both
pseudocode and a
flowchart

Guide students to
translate the logic from
the pseudocode and
flowchart to the specified
programming language

Guide students to plan
their test data to ensure
all parts of the program
are tested

Guide students to trace,
or check, the logic of the
program to ascertain that
it is error-free and
workable

Guide students to correct
bug or mistakes

 Students are able to
complete a programming
project to the required
standard.

The project can be either
assigned by the teacher or
be a problem proposed by
students based on their daily
experiences which can be
solved through programming

Building Young Futures

MBSSE’s Senior Secondary School Curriculum

 31

Ensure students follow
good programming
practice by documenting
both within the program
code (comments) as well
as documentation for
stakeholders

Guide students to share
their program for others
to run and critique

Guide students to make
improvements to their
programs bearing in mind
the critique received

Discuss how programs
can be maintained in
general. Guide students
to research for more
information on the
internet and write a brief
report on program
maintenance

RESOURCES
Textbooks
Computers (with Windows Operating System and typical software applications)
Internet
Devices and/or pictures showing hardware, software, and input/output devices
Computers
Printers
Activity sheets
Integrated Development Environment (IDE) of specified programming language OR Text editor and specified language implementation

