The New Senior Secondary Curriculum for Sierra Leone

Subject Syllabus for Computer Mathematics Subject stream: Mathematics and Numeracy

This subject syllabus is based on the National Curriculum Framework for Senior Secondary Education. It was prepared by national curriculum specialists and subject experts.

Curriculum elements for Computer Mathematics – an applied subject

Subject Description

Computer Mathematics aims to provide students with the requisite knowledge to gain an understanding of the mathematical concepts that underpin computers and how they store, process, communicate and transmit data. The students will be able to link theoretical mathematical concepts with its practical applications in computer programming, from logical and expressions and control structures for program flow, to matrices and functions for sophisticated data capture and analysis.

Rationale for the Inclusion of Computer Mathematics in the Senior Secondary School Curriculum

Computer Mathematics is a unique subject in the Senior Secondary School curriculum. Not only does it go in greater depth in topics such as Base Number Arithmetic and Logic, which are usually only briefly covered in a typical Mathematics course, it introduces concepts such as Algorithms not typically found in a secondary school curriculum. Its inclusion broadens and deepens the scope of mathematics knowledge the student is exposed to and enriches the curriculum in turn. Students will develop knowledge and skills through studying Computer Mathematics which they can build on in their future studies and employment. Computer Mathematics can be studied along Applications of Computer Mathematics (Coding) and together they make an impressive package for acquiring 21st century skills.

General Learning Outcomes

At the end of the course, students will be able to:

- explain the concept of number systems including the Real Number System and Base Number System
- use data representation and number base arithmetic
- · describe logic connectives and construct truth tables for logic gates
- · understand and use algorithms through writing pseudocode and creating flowcharts
- use logical, arithmetic and relational expressions in pseudocode and flowcharts
- · describe and use control structures in pseudocode and flowcharts
- solve linear equations, inequalities and formulas
- understand and use Set Theory
- understand and use probability
- describe character encoding systems
- solve simultaneous linear equations graphically, by substitution and elimination
- explain the fundamental principle of counting and use it to calculate probability
- understand permutations and combinations, and use them to calculate probability
- · describe a function, its domain and range, inverse and composite functions
- understand and use matrices, including matrix operations and finding transpose and inverse of matrices
- use matrices to solve systems of linear equations

Structure of the Syllabus Over the Three Year Senior Secondary Cycle

SSS 1	SSS 2	SSS 3
 NUMBER SYSTEMS Number Systems Concepts The Real Number System Properties of Real Numbers Base Number Systems Conversions Between Number Bases DATA REPRESENTATION AND BASE ARITHMETIC Computing Number Bases Units of Information Four operations on Binary Numbers Addition and Subtraction of Octal Numbers Addition and Subtraction of Hexadecimal Numbers 	 FURTHER BINARY ARITHMETIC Unsigned and Signed Binary Numbers Complements of Binary Numbers The Four Operations on Unsigned and Signed Binary Numbers CHARACTER ENCODING SYSTEMS More on Hexadecimals Character Sets Character Encoding Systems LOGIC II Tautologies and Contradictions Conditional Statements De Morgan's Laws Laws of Boolean Algebra 	 MATRICES Basic Matrices Concepts Addition and Subtraction of Matrices Scalar Multiplication Matrix Multiplication Properties of Matrix Operations Determinant of Matrices Matrix Row Operations Inverse Matrices SYSTEMS OF LINEAR EQUATIONS Solve Linear Equations in Two and Three Variables: Inverse Matrix Method Solve Linear Equations in Two and Three Variables: Gaussian Elimination Method Solve Linear Equations in Two and Three Variables: Gaussian Elimination Method
 LOGIC I Basic Logic Concepts Statements and Logical Connectives Truth Tables Boolean Logic ALGORITHMS Basic Algorithm Concepts Pseudocode Flowcharts 	 XOR, NAND and NOR Logic Gates SIMULTANEOUS LINEAR EQUATIONS Solve Linear Equations in Two Variables: Graphical Method Solve Linear Equations in Two Variables: Elimination Method Solve Linear Equations in Two Variables: Substitution Method Solve Linear Equations in Two Variables: Word Problems Solve Linear Equations in Three Variables: Graphical Method Solve Linear Equations in Three Variables: Graphical Method Solve Linear Equations in Three Variables: Elimination Method Solve Linear Equations in Three Variables: Word Problems 	Algorithm REVISION • All Topics

 LINEAR EQUATIONS, LINEAR INEQUALITIES AND FORMULAS Basic Algebra Concepts Linear Equations in One Variable Linear Inequalities in One Variable Graphical Representation of Linear Inequalities Formulas 	 SET THEORY II Cartesian Products of Sets Partition of Sets Power Sets 	
SET THEORY I	PERMUTATIONS, COMBINATIONS AND	
Basic Set Concepts	PROBABILITY	
Types of Sets	 Fundamental Principles of Counting 	
Venn Diagrams	 Multiplication Principle: Factorial Notation 	
 Subsets and Proper Subsets 	Permutations	
Set Operations	Combinations	
 Properties of Set Operations 	 Probability of Events 	
De Morgan's Laws		
	FUNCTIONS	
PROBABILITY I	Mappings, Relations and Functions	
Basic Probability Concepts	Using Function Notation	
Experimental and Theoretical Probability	Types of Functions	
Probability of Events Mutually Evaluation Events	Representing Functions	
Mutually Exclusive Events	 Domain and Range of Functions Inverse Functions 	
Independent EventsDe Morgan's Laws	Composite Functions	
Conditional Probability		

Structure of the Syllabus Over the Three Year Senior Secondary Cycle

	SSS 1	SSS 2	SSS 3
Term 1	 NUMBER SYSTEMS Number Systems Concepts The Real Number System Properties of Real Numbers Base Number Systems Conversions Between Number Bases DATA REPRESENTATION AND BASE ARITHMETIC Computing Number Bases Units of Information Four operations on Binary Numbers Addition and Subtraction of Octal Numbers Addition and Subtraction of Hexadecimal Numbers 	 FURTHER BINARY ARITHMETIC Unsigned and Signed Binary Numbers Complements of Binary Numbers The Four Operations on Unsigned and Signed Binary Numbers CHARACTER ENCODING SYSTEMS More on Hexadecimals Character Sets Character Encoding Systems LOGIC II Tautologies and Contradictions Conditional Statements De Morgan's Laws Laws of Boolean Algebra XOR, NAND and NOR Logic Gates 	 MATRICES Basic Matrices Concepts Addition and Subtraction of Matrices Scalar Multiplication Matrix Multiplication Properties of Matrix Operations Determinant of Matrices Matrix Row Operations Inverse Matrices Systems of LINEAR EQUATIONS Solve Linear Equations in Two and Three Variables: Inverse Matrix Method Solve Linear Equations in Two and Three Variables: Gaussian Elimination Method Solve Linear Equations in n Variables: Algorithm
Term 2	 LOGIC I Basic Logic Concepts Statements and Logical Connectives Truth Tables Boolean Logic ALGORITHMS Basic Algorithm Concepts Pseudocode Flowcharts LINEAR EQUATIONS, LINEAR INEQUALITIES AND FORMULAS Basic Algebra Concepts Linear Equations in One Variable 	 SIMULTANEOUS LINEAR EQUATIONS Solve Linear Equations in Two Variables: Graphical Method Solve Linear Equations in Two Variables: Elimination Method Solve Linear Equations in Two Variables: Substitution Method Solve Linear Equations in Two Variables: Word Problems Solve Linear Equations in Three Variables: Graphical Method Solve Linear Equations in Three Variables: Elimination Method Solve Linear Equations in Three Variables: Elimination Method Solve Linear Equations in Three Variables: Elimination Method Solve Linear Equations in Three Variables: Word Problems 	REVISION • All Topics

	 Linear Inequalities in One Variable Graphical Representation of Linear Inequalities Formulas 	 SET THEORY II Cartesian Products of Sets Partition of Sets Power Sets 	
Term 3	 SET THEORY I Basic Set Concepts Types of Sets Venn Diagrams Subsets and Proper Subsets Set Operations Properties of Set Operations De Morgan's Laws 	 PERMUTATIONS, COMBINATIONS AND PROBABILITY Fundamental Principles of Counting Multiplication Principle: Factorial Notation Permutations Combinations Probability of Events 	
	 PROBABILITY I Basic Probability Concepts Experimental and Theoretical Probability Probability of Events Mutually Exclusive Events Independent Events De Morgan's Laws Conditional Probability 	 FUNCTIONS Mappings, Relations and Functions Using Function Notation Types of Functions Representing Functions Domain and Range of Functions Inverse Functions Composite Functions 	

< '

Teaching Syllabus

Topic/Theme/Unit	Expected learning	Recommended	Suggested resources	Assessment of learning
	outcomes	teaching methods		outcomes
YEAR 1/TERM 1				
NUMBER SYSTEMS	Students will be able to:	Introduce number systems as systems used	Textbook	Students are able to:
Number Systems Concepts The Real Number	Show they understand the concept of number systems Show they understand the	to express or represent numbers Guide students to work in	Information sheets on different types of number systems: • additive (e.g., Roman)	Investigate and take part in a class presentation on different types of number systems
System Properties of Real Numbers	structure of the Real Number System and the relationship between the numbers	pairs to investigate different types of number systems using the provided information	 multiplicative (e.g., Chinese) cipher (e.g., Greek) positional (e.g., Hindu- 	Describe the structure of real numbers using set notation and Venn diagrams
Base Number Systems Conversions Between	Classify a real number as natural, whole, integer, rational or irrational	sheets Demonstrate and guide students to describe the	Arabic, also known as the decimal) number systems	Hold up one of the real number labels in response to a number written on the
Number Bases	Order and compare real numbers	set of real numbers. Guide students to use	Activity sheets Computer	board or called out by the teacher
	Show they understand and can apply properties of	basic set notation and Venn diagrams to show the inter-relationship	Internet	Identify which subset of real numbers to put given
	addition and multiplication	between the numbers	Card sets of real numbers	numbers
	of real numbers, i.e., for two real numbers a and b , including:	Guide students to work in pairs to sort a set of 20 real number cards	such as -3 , $\frac{4}{7}$, $\sqrt{5}$, 12, etc., Labels for 'natural number',	Put the correct inequality symbol between two real numbers
	 closure (a + b ∈ ℝ and ab ∈ ℝ) commutative (a + b = b + a and 	according to the type of number	'whole number', 'integers', 'rational number' and 'irrational number'	List all the numbers in a given range larger (or smaller) than a given number
	ab = ba) • associative ((a+b) + c = a + (b+c))		Dot card sets for decimal, binary, octal and hexadecimal (i.e. dot patterns on one side, the	Explain to a classmate using examples why (a+b) + c = a + (b+c)

 and (<i>a</i>·<i>b</i>)·<i>c</i> = <i>a</i>·(<i>b</i>·<i>c</i>)) identity (or neutral) elements (<i>a</i> + 0 = <i>a</i> and <i>a</i> · 1 = <i>a</i>) inverse elements (<i>a</i> - <i>a</i> = <i>a</i> × ¹/_{<i>a</i>} = 1 for <i>a</i> ≠ 0) Show they understand that subtraction and division are neither associative nor commutative Show they understand and can use the positional number systems of bases: decimal, binary, octal, hexadecimal, and their notations Convert between decimal, binary, octal and hexadecimal systems 	Demonstrate and guide students to use the inequality symbols, <, \leq , >, \geq to compare the numbers Demonstrate each of the properties using a combination of real numbers, i.e., integers, rational and irrational numbers, e.g., for the commutative property for multiplication, show that: $7 \times 8 = 8 \times 7$ Guide students to test some of the properties themselves, e.g., How can we show that $\frac{12}{\sqrt{14}} \times \frac{1}{\frac{12}{\sqrt{14}}} = 1$ For commutativity, guide students to show on a number line why they get the same answer for addition and multiplication of real numbers Guide students to compare what they get when they do the calculation, 6 - 2 and $2 - 6$	number in the corresponding base on the other) Place-value charts for decimal, binary, octal, hexadecimal number systems	and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ Answer questions such as: • "Why is subtraction not commutative?" • "Why is multiplication associative?" Show on a number line that real numbers are commutative and associative under: 9 + 4 = 4 + 9 and 3 × 9 = 9 × 3 Answer standard questions on properties of real numbers Answer questions such as: "What are the place values for base 2 (8 / 16)" Read and write a decimal, binary, octal or hexadecimal number using the correct base notation Create a table (or poster) of the first 16 decimal, binary, octal and hexadecimal numbers

Do they get the same answer? Can they show the calculation on a number line to explain why they get different answers? Guide students to do the same for division and explain their result Demonstrate and guide student to show the positional (place-value) nature of these systems using place-value charts with the positions being represented by the powers of the base Guide students to use the base notation, e.g., 568 (for an octal number, or # or 0x prefix for hexadecimal Guide students to use dot cards to show how counting is done in decimal (base 10), binary (base 2), octal (base 8) and hexadecimal (base 16) Discuss correct counting, e.g., "56" in octal is not pronounced "fifty-six", but

"five six"; fifty six is a

Work in pairs to match cards with the same decimal, binary, octal and hexadecimal number

Work independently or in pairs to use the appropriate powers to convert between different base systems

		 decimal number (five tens and six ones) Demonstrate using the appropriate powers of the base how to convert: a number in decimal to binary, octal or hexadecimal, and vice versa a number in binary to octal and vice versa a number in binary to hexadecimal and vice versa 		
 DATA REPRESENTATION AND BASE ARITHMETIC Computing Number Bases Units of Information Four operations on Binary Numbers Addition and Subtraction of Octal Numbers Addition and Subtraction of Hexadecimal Numbers 	Students will be able to: Show an understanding of the context in which the binary number system is used in computer programming Show they understand how and why octal and hexadecimal number systems are used in computer programming Perform addition and subtraction on binary integer numbers Perform addition and subtraction on octal and hexadecimal integer numbers	Explain what bits and bytes are in terms of binary numbers Guide students to use the information sheets to show how binary numbers are used in computer systems. For example, a bit is a binary digit, 0 (for off) or 1 (for on). It is the unit of information computers use to store data (i.e., numbers, text, sound, images, etc.) Demonstrate and guide students to show how octal and hexadecimal numbers are used in writing code as they have fewer number of digits	Textbook Information sheets on the use of non-decimal number systems in computers Activity sheets	Students are able to: Explain to a friend who was absent why binary, octal and hexadecimal numbers are used in computer programming Can use conversions of decimal, binary, octal and hexadecimal numbers to explain data representation in computers Convert between units of information (e.g. bytes, kilobytes, megabytes, etc.) Use the place value of binary numbers to add and subtract two binary integer numbers

which are easier to manipulate than binary numbers. For example: $89_{10} = 1011001_2$ $= 01011001_2$ $= \begin{array}{c} 001 \ 011 \\ 001_2 \end{array}$ = 1318 Also, 0101 8910= 10012 = 5916 Ask students how they would translate these numbers into bits Introduce the terms: byte (a group of 8 bits), nibble for half a byte (4 bits), kilobyte (KB), megabyte (MB), gigabyte (GB) and tetrabyte (TB) Remind students that computer storage (hard drive and RAM) is measured in (tens of) thousands of bytes Demonstrate how to complete the addition facts table for binary integer numbers, i.e. 11 0 + 1 111 0 1 0 + 101 1 1100 1 10

Use the place value of octal and hexadecimal numbers to add and subtract integer numbers

Use the addition table to guide students in adding two binary integer numbers, of no more than 8 bits per number, as shown above

Demonstrate and guide students to subtract two binary integer numbers of no more than 8 bits per number

Briefly explain overflow errors in calculations

Ask questions such as "Is there a pattern to the results obtained from adding two numbers together which can help us to add two octal (hexadecimal) numbers?"

		Use the addition facts to demonstrate how addition is performed on octal integer numbers. Use similar reasoning to add hexadecimal integer numbers and to subtract in each of the bases. Limit the numbers to no more than 8 bits equivalent per number		
YEAR 1/TERM 2				
LOGIC I	Students will be able to:	Ask students what they	Textbook	Students are able to:
Basic Logic Concepts	Understand the concept of mathematical logic and its	understand by the word 'logic'. Allow them to use their dictionaries and	Dictionary Information sheets on mathematical logic	research and write a brief report on the history of
Statements and Logical Connectives	applications in computer programming	share the meaning found with the class.	Internet Activity sheets Logic puzzles and games	mathematical logic and its applications in computer programming
Truth Tables	Identify open and closed	Guide students to use the		
Boolean Logic	statements	information sheets to explain what logic is (i.e.,		Work in pairs to identify open and closed statements and
	Assign a truth value to a	a science that studies the		give reasons for choice
	statement	principles of correct reasoning). Ask: "Does it		Assign a truth value to a
	Write the symbolic form of	match the dictionary		statement by identifying them
	simple statements	meaning?" Discuss why/why not		as true or false
				Work in pairs to form
	Classify compound statements as a negation,	Guide students to research and discuss why		statements for their partner to identify as true or false and
	conjunction, disjunction,	logic is important in		give reasons for choice
	conditional or bi-conditional	computer programming		Write simple statements
	Use logical connectives to	Discuss open and closed		using the form:

<pre>write compound statements Write a compound statement given in words in symbolic form, and vice versa Use truth tables to analyse the truth values of compound statements Determine if statements are logically equivalent. Show they understand the concept of Boolean logic and its applications in computer programming Show they understand and can use operators in expressions to control the flow in computer programming: Boolean (or logical) operators relational operators: < (less than) < <= (less than or equal to) < = (greater than or equal to)</pre>	statements using everyday examples such as: Mangoes are fruits Mangoes are the best fruits Guide students to identify simple open and closed statements and discuss reasons for choices Demonstrate and guide students to use simple statements which can only be answered by 'True' or 'False' to explain the concept of mathematical logic, e.g. <i>4 is an even number</i> <i>Sierra Leone is in West</i> <i>Africa</i> <i>All prime numbers are</i> <i>odd</i> 1 + 2 = 3 Which of these are true (T) / false (F)? How do they know the statement is true/false? Can they justify their answer?		Let p : grass is green Let q : every even number is divisible by 4 Work independently or in pairs to identify compound statements Use letters and the logical connectives to translate compound statements written in words to symbols and vice versa Write simple statements in words for a partner to form compound statements in symbols to represent: $(p \Box q) \Box r$ and $p \Box (q \Box r)$ Discuss in their pairs whether the two statements mean the same thing. Discuss as a class. Work independently or in pairs to complete logic puzzles and other logic games
equal to) = (equal to) ≠ (not equal to) arithmetic operators	Show how letters can be used to denote simple statements, e.g., let <i>p</i> represent the simple statement: <i>"Mariama is a</i> <i>farmer</i> ".		Use the truth tables for $\sim p$, $p \square q$ to construct new truth tables, e.g. for $p \square \sim q$, $p \square p \square q$, etc.
	<pre>Write a compound statement given in words in symbolic form, and vice versa Use truth tables to analyse the truth values of compound statements Determine if statements are logically equivalent.</pre> Determine if statements are logically equivalent. Show they understand the concept of Boolean logic and its applications in computer programming Show they understand and can use operators in expressions to control the flow in computer programming: Boolean (or logical) operators relational operators: < (less than) <= (less than or equal to) >= (greater than or equal to) = (equal to) 	Write a compound statement given in words in symbolic form, and vice versaeveryday examples such as: Mangoes are the best fruitsUse truth tables to analyse the truth values of compound statementsGuide students to identify simple open and closed statements and discuss reasons for choicesDetermine if statements are logically equivalent.Guide students to identify simple open and closed statements and discuss reasons for choicesDetermine if statements are logically equivalent.Demonstrate and guide students to use simple statements which can only be answered by 'True' or 'False' to explain the concept of mathematical logic, e.g. 4 is an even number Sierra Leone is in West AfricaShow they understand and can use operators in expressions to control the flow in computer programming: • celless than or equal to) • > (greater than) • >= (greater than or equal to) • = (equal to) • = (equal to) • = (inot equal to) • = (inot equal to) • arithmetic operatorsShow how letters can be used to denote simple statements, e.g., let p represent the simple	Write a compound statement given in words in symbolic form, and vice versaeveryday examples such as: Mangoes are truits Mangoes are the best fruitsUse truth tables to analyse the truth values of compound statementsGuide students to identify simple open and closed statements and discuss reasons for choicesDetermine if statements are logically equivalent.Guide students to identify simple open and closed statements and discuss reasons for choicesDetermine if statements are logically equivalent.Demonstrate and guide students to use simple statements which can only be answered by 'True' or 'False' to explain the concept of Show they understand and can use operators in expressions to control the flow in computer programming:Jenne Numbers are odd• Boolean (or logical) to perators1 + 2 = 3 Which of these are true (T) / false (F)? How do they know the statement is true/false? Can they justify their answer?• Segreater than or equal to)Show how letters can be used to denote simple statements, e.g., let p represent the simple statement." <i>Mariama is a</i>

Show that this statement can be written as: Let *p*: Mariama is a farmer

Demonstrate and guide students to classify compound statement as a negation or a combination of simple statements using logical connectives:

- negation (not, ~)
- conjunction (and, □)
- disjunction (or, □)
- conditional (if then, \Box)
- bi-conditional (if and only if, □)

Demonstrate using plenty of examples of increasing complexity to illustrate each of the compound statements. e.g. (of negation) the statement: "Musa is at home" has as its negation "Musa is not at home" Show how this can be written as: Let p: Musa is at home ~p: Musa is not at home $\sim p$ is read as "not p"

Demonstrate that negations of true statements is always Answer questions such as: • "Under what conditions will a given compound statement be true?"

Devise a strategy to help a friend systematically construct truth tables and thus determine its truth value

Work independently or in pairs to complete logic puzzles and other logic games

Draw truth tables to determine if statements are logically equivalent

Explain Boolean logic and how it is used in computer programming

Construct logic gates and truth tables for NOT, AND and OR from both everyday life and mathematics

Write expressions using both Boolean and relational operators

false and vice versa

Guide students to interpret and write compound statements including negations in words and symbolic form

Introduce truth tables using an example in words for negation: Let p: Musa is at home $\sim p$: Musa is not at home

p	~p
Т	F
F	Т

If p is true, $\sim p$ is false. If p is false, $\sim p$ is true

Explain that a truth table is used to determine whether a compound statement is true or false

Demonstrate further examples using mathematical statements, e.g.

Let p: 2 is an even number $\sim p$: 2 is not an even number

Guide the students to work in pairs. They use statements written in words to construct truth tables for negation, conjunction, disjunctive and the conditional statements Demonstrate using examples the conditions under which two statements are logically equivalent. Guide

equivalent. Guide students to draw truth tables and understand this happens if and only if their truth tables are the same

Introduce and discuss Boolean logic as the logic used to control the flow of computer programs

AND (+),
 OR (⋅)
 where the binary digits 1

and 0 indicate True (on) and False (off) respectively

Guide students to write the Boolean expression

		for each gate Discuss and guide students to show how the Boolean operators are used giving examples from everyday life such as with the statements: A: I will take a keke if it is very hot B: I am tired Demonstrate and guide students to use the typical relational operators in conjunction with boolean operators, e.g. <i>if Age < 16 OR Age > 65</i> <i>then you pay a reduced</i> <i>price</i> will result in either true or false depending on the age of the person Demonstrate and guide students to use the order of operations for Boolean operators, I.e. (Brackets) – NOT – AND – OR		
ALGORITHMS	Students will be able to:	Guide students to work in pairs to put a set of	Textbook Activity sheets	Students are able to:
Basic Algorithm Concepts	Define and state the characteristics of algorithms	sequencing cards for a task, (e.g., making tea or coffee), in order.	Sequencing cards Poster of flowchart names, symbols and uses	Explain what an algorithm is, its characteristics and functions
Pseudocode	Outline functions of algorithms	Alternatively ask students to think and write down		Write algorithms to solve

Flowcharts	Explain and use the	the activities they need to do to complete the task	 a simple everyday problem, e.g., buying a
	components of pseudocode		mobile phone
	to write simple algorithms	Ask a few students to put	 a simple mathematical
	for solving given problems	their solutions on the	problems, e.g. finding the
	Define and state the	board. Compare the solutions, ask questions	area of a rectangle given the lengths of its sides
	characteristics of flowcharts	on students' thinking (see	
		Assessment) and vote on	Answer questions such as:
	Classify flowchart symbols	the most efficient (or	 "What made you decide
	and their uses	quickest) solutions	do it that way?"
			 "What can you do to make
	Use control structures to	Explain what an algorithm	your algorithm more
	translate more complex	is using the task students	efficient?"
	algorithms to pseudocode	just completed	• "What is the same /
	and flowchart	Provide explanations of	different between your
	 sequence: a linear execution of 	characteristics and	solution and one on the board?"
	statements	functions of algorithms	board :
	olatomonio		Use the components of
	 selection (conditionals): 	Show examples of simple	pseudocode to write simple
	 if/then 	algorithms written in	algorithms for given problem
	 if/then/else 	pseudocode. Use them to	Problems include:
	• case	explain the basic	 adding three numbers
	 Boolean logic 	pseudocode (and coding) components:	 finding the average of tw
	• repetition (loops):	 variable – unknown 	or three numbers
	 while 	quantity with a name,	 calculating perimeter,
	• for	a data type, and a	areas and volumes of
	 do/while 	value.	shapes, etc.
	 repeat/until 	 assignment – give a 	
		value to a variable	
	Draw flowcharts for solving	 transfer – read an 	
	given problems	input, write an output	Answer questions such as:
		 control – specifies which is the next step 	 "What is a flowchart?"
		to be executed	–
			Explain to an absent
			classmate the characteristic

Guide students to write algorithms using pseudocode, e.g., add two numbers

Show an example of a simple flowchart (e.g., for adding two numbers) and use it to define and state the characteristics of flowcharts

Demonstrate using a prepared poster the names and pictures of flowchart symbols and their uses in drawing flowcharts

Demonstrate and guide students to use pseudocode and flowcharts to show how more complex algorithms and programs are written using the three control structures

Discuss sequential control as the default means by which a program is executed as used in the basic algorithms to date

Explain how selection control is used to execute one or more statements if a given condition is met names, symbols and uses of flowcharts

Use the symbols of flowcharts to write simple algorithms for the given problems above

Trace the logic of given pseudocode and flowcharts which show more complex problems using control structures

Sse pseudocode and flowcharts to write more complex algorithms to solve a given problem. Problems include:

- find the largest / smallest number among three numbers
- generate the 5 times tables from 1x to 12x
- output the count of all even numbers between a user defined range of numbers
- check whether a number is prime or not (composite)
- write error message when input number is not 5 or 6
 etc.

Compare their algorithms with other students and improve their own

		Guide students to research the internet to find out how iteration control works {repeats a statement a certain number of times, or while a condition is fulfilled) Guide students to work in pairs to write pseudocode and draw flowcharts for more complex mathematical calculations, e.g., finding the larger /smaller of two numbers Compare and discuss students' pseudocodes for efficiency		
Linear Equations in One Variable Linear Inequalities in One Variable Graphical Representation of Linear Inequalities Formulas	Students will be able to: Recall the basic concepts of algebra: • order of operations • evaluating algebraic expressions • collecting like terms • factorisation • expanding single and double brackets • rearranging and evaluating formulas Solve linear equations in one variable	Review the basic algebra concepts using examples and exercises for students to complete. Include algebraic expressions with fractions. Demonstrate collecting like terms using a combination of like terms, e.g., $x^2y xy^2$, etc. Include negative coefficients Demonstrate and guide students to solve equations of the type	Textbooks Activity sheets	Students are able to: Recall and answer questions on basic algebraic concepts Solve linear equations in one variable Check solutions to linear equations Solve word problems involving linear equations in one variable Solve linear inequalities in one variable and show the

word problems	ax + b = c	
ng linear equations in ariable	using the addition and multiplication principles	
ariable linear inequalities in ariable sent the solution sets ar inequalities cally word problems ng linear inequalities variable tute values into as	multiplication principles Demonstrate other types, of linear equations e.g., with the variable on both sides of the equation, e.g. ax + b = cx + d. Use examples which will require expanding brackets, collecting like terms and fractions Guide students to check their solutions by substituting into the original equation Guide students to solve word problems involving linear equations in one variable Demonstrate and guide students to solve a variety of linear inequalities, e.g. $0 \le ax + b \le c$	
	represent the solution on a number line Guide students to solve word problems involving linear inequalities in one variable	
	linear inequalities in ariable sent the solution sets ar inequalities cally word problems ng linear inequalities variable tute values into as ge the subject of as	ariablemultiplication principleslinear inequalities in ariableDemonstrate other types, of linear equations e.g., with the variable on both sides of the equation, e.g. $ax + b = cx + d$.sent the solution sets ar inequalities callyDemonstrate other types, of linear equations e.g., with the variable on both sides of the equation, e.g. $ax + b = cx + d$.word problems ng linear inequalities variableUse examples which will require expanding brackets, collecting like terms and fractionstute values into asGuide students to check their solutions by substituting into the original equationge the subject of asGuide students to solve word problems involving linear equations in one variableDemonstrate and guide students to solve a variety of linear inequalities, e.g. $0 \le ax + b \le c$ Guide students to represent the solution on a number line Guide students to solve word problems involving linear inequalities in one

solution on the number line

Solve word problems involving linear inequalities in one variable

Substitute values into variables and solve

Rearrange the formula, substitute values into variables and solve

		Demonstrate how to solve formulas by substituting values into scientific and other formula, e.g.: $I = PRT$, $a^2 + b^2 = c^2$ Guide students to solve similar formulas Demonstrate how to change the subject of a formula, i.e. make a different variable the subject, then solve by substituting given values		
YEAR 1/TERM 3				
SET THEORY 1	Students will be able to:		Tauthealus	Students are able to:
Basic Set Concepts	define a set as a collection	Introduce sets using collections of objects,	Textbooks	Describe what a set is to their
Types of Sets	of objects with defined	shapes, numbers and	Activity sheets	peers
	attributes	names from around the	Activity sheets	peers
Venn Diagrams		classroom, school and	Computers	Explain why Set Theory is
	Explain the use of Set	community		important to computer
Subsets and Proper	Theory in computer	-	Internet	programming
Subsets	programming	Discuss why Set Theory		
		is important in computer	Objects or pictures of	Give true or false answers to
Set Operations	Determine if a set is well defined	programming	objects	indicate whether collections of objects and numbers are
Properties of Set		Guide students to use the	2D attribute shapes	well-defined sets
Operations		internet to research and	·	
	Use the notations for	write a brief history of Set	Sets of number cards with	Answer questions such as:
	naming sets and elements	Theory and how it has	common attribute e.g. odd,	• "What are the elements in
	or members of a set	influenced logic on which	even, prime, square	your set?"
		a lot of Computer Science		 "What elements are not in
	List the elements of a set	is based	Sets of cards with names e.g., places, capital cities,	your set?" ∘ "How can we make the
			E O DIACES CADITALCINES	

description method, roster	students to understand	with same initial	
form, and set-builder	the concept of well-		Write a given set in the othe
notation	defined sets using		two ways
	examples and non-		
Use Venn diagrams to	examples		Write sets in one of the forr
represent sets			from a table of data or grap
	Demonstrate and guide		e.g. given a table of
Classify sets as either finite	students to name sets		population of districts in
or infinite	using capital letters, and		Sierra Leone, they can writ
	elements using the ϵ		sets of districts with
Find the cardinality of a set	symbol, i.e.: $p \in A$, which		population more (or less)
· · · · · · · · · · · · · · · · · · ·	is read as:		than 100,000, etc.
Explain the conditions under	"p is an element of A"		
which two sets are equal,			Work independently or in
equivalent, both or neither	Guide students to use the		pairs to sort a variety of giv
equivalent, beth of heither	proper notation for an		sets into finite, infinite, unit
Identify disjoint sets	element which does not		and empty sets
	belong to a set, i.e.: $p \notin A$		and empty sets
Identify the unit set	" <i>p</i> is not an element of <i>A</i> "		Sort pairs of sets into equa
identity the drift set	p is not all element of A		equivalent, both or neither
Identify, and use the	Guide students to give		equivalent, both of heither
notation for, the empty (null)	everyday examples of		Answer questions such as
set	sets and list elements of		 "How many ways can y
361	the set.		find to describe the
Identify, and use the			set?"
notation for, the universal	Demonstrate how to write		 "What elements are in the
set			complement of the
561	sets using:		set? Draw a Venn
Identify, and use the	 description of their 		
notation for, the	common attributes,		diagram to represent th
	e.g., the set of all		set
complement of a set	natural numbers		Describe five pessible
Use the notation for subsets	roster form using		Describe five possible universal sets of which Sie
	curly brackets and		
of a set	ellipsis where		Leone is one of the element
Find all autoate and proper	appropriate, e.g.		e.g., set of countries in We
Find all subsets and proper	N = { 1, 2, 3, … }		Africa, set of diamond
subsets of a set	 set-builder notation, 		exporting countries, set of
	e.g.		countries who have hosted
Find the union of two sets			the Dakar rally, etc.

Find the intersection of two sets $N = \{x : x \ natural number \ number \ number \ number \ natural number \ natural number \ number \ number \ number \ number \ natural number \ natural number \ natural number \ natural number \ number \ number \ number \ natural n$		
	sets Find the difference of two sets Show they understand and can use properties of set operations: • commutative • associative • distributive • identity • dominative • complement	 natural nurread as: "s the set of elements that x is a number" Provide examples different sets. Guid students to work in groups to investige each of the statem below by listing ele and drawing Venn diagrams of different types of sets: finite set (a set limited numbe elements/mem infinite set (a set unlimited numbe elements/mem cardinality of a (the (number of elements, n, in <i>A</i>, n(<i>A</i>)) equal sets (two <i>A</i>, <i>B</i>, containing exactly the same elements, i.e. equivalent sets sets <i>A</i>, <i>B</i> contain the same num elements, n(<i>A</i>) disjoint sets (two <i>n</i>(<i>B</i>))

x is a umber } "set N is all x such natural

s of ide in ate ments lements ent

- et with er of mbers)
- set with nber of mbers)
- a set of n a set
- vo sets, ng ame A = B
- ts (two taining nber of 4) =
- two sets ng no

Answer questions such as:

- "What sets can you make for a different element such as ...?"
- "Name another element and the different sets in which it can be put"
- "Name all the subsets of the set"
- "Which of the subsets are also proper subsets of the set ...?"

Answer standard questions using set notation and Venn diagrams on subsets and proper subsets of a given set

Answer standard questions using set notation and Venn diagrams on union, intersection and difference, of up to three sets

Answer standard questions using set notation and Venn diagrams on properties of up to three sets

elements in common) • unit set (a set, A, with a single member, n(A) = 1• empty (null, Ø) set (a set with no elements or members) • universal set, U or ɛ (a set containing all the elements in a given context) • complement of a set (a set containing all the elements not in a particular set, A^c or A') Demonstrate and guide students to describe and draw Venn diagrams for: • subset (a set A containing all the elements of another set *B*, i.e. $A \square B$; sometimes the two sets can also be equal). Show that in a set with *n* elements the number of subsets is 2^n proper subset (a set • containing all the elements of another set, but is not equal to that set, i.e. $A \square B$, A \square *B*). Show that in a set with *n* elements the number of proper

subsets is $2^n - 1$ Discuss the following (or similar) example with the students: if A={2,4,6} then B={2,6} is a proper subset of A. The set C={2,4,6} is a subset of A, but it is not a proper subset of A since C=A. The set D={2,5} is not even a subset of A, since 5 is not an element of A. Demonstrate and guide students to use set notation and Venn diagrams to find: • union of two sets, $A \sqcap B$ • intersection of two sets, $A \square B$ • difference of two sets, A|B (or A – B) Demonstrate and guide students to use set notation and Venn diagrams to show that given sets A, B, C: • commutativity $A \square B = B \square A$ $A \square B = B \square A$ associativity $(A \Box B) \Box C = A \Box (B \Box$ C) $(A \square B) \square C = A \square (B \square)$

		C) • distributivity $A \square (B \square C)$ $= (A \square B) \square (A \square C)$ $A \square (B \square C)$ $= (A \square B) \square (A \square C)$ • identity $A \square \emptyset = A, A \square U = A$ • dominativity $A \square U = U, A \square \emptyset = \emptyset$ • idempotent $A \square A = A, A \square A = A$ • complement $A \square A^c = U, A \square A^c = \emptyset$ • De Morgan's Law $(A \square B)^c = A^c \square B^c$ $(A \square B)^c = A^c \square B^c$ Guide students to solve standard problems using these concepts Demonstrate and guide students to look at other laws if time permits (e.g. double complement, absorption, etc.)		
PROBABILITY IBasic Probability ConceptsExperimental and Theoretical ProbabilityProbability of EventsMutually Exclusive	Students will be able to: Demonstrate that they understand the language of probability Explain the use of probability in computer programming Find the experimental	Use practical examples, e.g., rolling a single die to explain the meaning of the words <i>experiment</i> , <i>event</i> , <i>outcome</i> , <i>sample</i> <i>space</i> , <i>fair</i> , <i>bias</i> Work independently or with a partner to classify given events according to whether they are <i>Certain</i> , <i>Likely</i> , <i>Unlikely</i> or	Textbooks Activity sheets Computers Internet Dice Playing cards Coins Spinners	Students are able to: Explain the terms used in probability, e.g., experiment, event, outcome, etc. Explain why probability is important to computer programming Use dice, playing cards,

Events	probabilities of simple events	Impossible	coins, spinners to conduct experiments and calculate
Independent Events		Discuss why probability	the experimental probabilities
	Determine the sample	are important in computer	of simple events
De Morgan's Laws	space and theoretical	programming	
	probabilities for equally		Answer questions such as:
Conditional Probability	likely events	Guide students to use the	 "How many heads do you
	Explain the difference	internet to research and	think you will get if you
	between experimental and	discuss probability and	tossed a coin 5/10/50/100
	theoretical probabilities	how it is used in	times?"
		computer programming to	• "What do you think the
	Show that the probability of	understand the	probability of getting a
	any event, P, must satisfy 0	performance of	Queen of Hearts is? Try it
	$\leq P \leq 1$	algorithms, interpreting	and see if you are right."
	Chow that probabilities of all	data, speech recognition	
	Show that probabilities of all the events of an experiment	(e.g. voice control phone	Write the sample spaces for
	add up to 1	access), etc.	the experiments above, and calculate the theoretical
		Guide students to	probabilities of simple events
		perform simple	probabilities of simple events
	Illustrate probabilities of	experiments e.g. for	Explain to the class what the
	simple events on a number	drawing cards from a	difference is between
	line	deck of playing cards,	experimental and theoretical
		rolling a die, tossing a	probabilities
	Understand and use the	coin, spinning the pointer	probabilities
	addition law for probabilities	on a spinner etc. and	Answer questions such as:
		record their results	 "Did you get the same
	Describe mutually exclusive		answer for your
	events and use the addition	Demonstrate and guide	experimental and
	law to calculate probabilities	students on how to find	theoretical probabilities?"
		the experimental	 "Why do you think your
	Describe independent	probability or relative	result came out the way it
	events and use the product	frequency using the	did?"
	law to calculate probabilities	formula:	• etc.
	State and use De Morgan's	$P(E) = \frac{number of occurrences of an event}{total number of experiments}$	
	•	total number of experiments	Calculate and verify that
	Laws for probability	D(E) road on "probability	probabilities are between 0
	Calculate simple conditional	<i>P</i> (<i>E</i>) read as "probability of E" where E is the event	and 1
	Calculate simple conditional		

probability	in question Demonstrate and guide students to write the sample space for equally likely events and calculate their theoretical probabilities using the formula: $P(E) = \frac{number of outcomes of an event}{total number of outcomes}$ Guide students to use the results from their experiments and the	Calculate and verify that the probabilities of an experiment add up to 1 Show probabilities of events on a number line Use the addition law and Venn diagrams to calculate and show the probability of two events happening use the addition law for mutually exclusive events, and Venn diagrams to
	theoretical sample spaces to differentiate between experimental and theoretical probabilities Discuss what happens	calculate and show the probabilities of mutually exclusive events Use tree diagrams to find the probability of events
	with the experimental probability when a sufficiently large number of experiments is performed	Use the product law to calculate the probabilities of independent events Use Venn diagrams to illustrate De Morgan's laws
	Maybe move this up + the probability line Demonstrate how individual probabilities of events are between 0 and 1, and all the probabilities add up to 1	Solve problems using the principles of De Morgan's laws. Illustrate answers using Venn diagrams Answer standard questions on conditional probability
	Guide students to find	on conditional probability

probability of event *B*, given probability of event *A* as: P(B) = 1 - P(A)

Draw a probability line on the board and explain its features. Demonstrate and guide students to show the probabilities of simple events on the line

Demonstrate using Venn diagrams the probability of two events happening

Show how this can be written as: $P(A) + P(B) - P(A \square B)$

Guide students to use the addition law to find probabilities and show their results on Venn diagrams

Demonstrate and illustrate using Venn diagrams to show mutually exclusive events as events which do not occur at the same time.

Guide students to state and use the addition rule to find the probability of two mutually exclusive events *A* or *B* occurring, i.e., from the diagram: $(A \Box B) = 0 \Box P(A \Box B) = 0$ $\Box P(A \text{ or } B) = P(A) + P(B)$

Demonstrate using practical examples, e.g., the probability of getting a head and a tail at the same time when tossing a coin

Introduce tree diagrams and use it to find simple probabilities

Demonstrate and guide students to use tree diagrams to show two independent events defined as the probability of one event occurring having no effect on the probability of the other event occurring.

Guide students to state and use the product rule

to find the probabilities of two independent events occurring, i.e. $P(A \text{ and } B) = P(A) \times P(B)$ Demonstrate using practical examples, e.g., the probability of getting a head on a coin toss and drawing a 3 of hearts from a pack of playing cards Discuss De Morgan's Laws (met previously in Sets) as it relates to probability, i.e. $P(A \square B)^c = P(A^c \square B^c)$ $P(A \square B)^c = P(A^c \square B^c)$ Demonstrate practical examples using Venn diagrams. Guide students to use the laws and Venn diagrams to solve problems Use Venn diagrams to illustrate and guide students to solve problems Guide students to calculate simple conditional probabilities i.e., Probability of event A, given that B had occurred is defined by:

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Show using practical examples that conditional probability is the probability of event *A* occurring, given that event *B* occurs.

Note if A and B are independent then P(A|B) = P(A)

Guide students to use the formulas to calculate conditional probability of an event, e.g., given that a black card is drawn from a pack of cards, the probability of it being a seven, i.e., *P*(seven|black)

YEAR 2/TERM 1				
FURTHER BINARY ARITHMETIC Unsigned and Signed Binary Numbers Complements of Binary Numbers The Four Operations on Unsigned and Signed Binary Numbers	 Students will be able to: Show that they know the difference between unsigned and signed binary numbers Show they understand and can use complements of binary numbers Recall and extend binary addition and subtraction Perform multiplication and division of unsigned binary integer numbers Perform multiplication and division of signed binary integer numbers 	 Review unsigned binary numbers Demonstrate and guide students to show signed numbers represented through sign and magnitude notation (SM) using the most significant bit (MSB) one's complement two's complement Review how to add and subtract up to three unsigned binary numbers of no more than 8 bits per number Demonstrate and guide students to add and subtract unsigned and signed binary numbers using one's and two's complements Demonstrate and guide students to apply a binary shift to multiply and divide two unsigned binary integer numbers of no more than 8 bits per number Demonstrate and guide students to apply a binary shift to multiply and divide two unsigned binary integer numbers of no more than 8 bits per number 	Textbooks Activity sheets	 Students are able to: Differentiate between unsigned and signed binary numbers Explain and convert numbers using different representations Add and subtract unsigned and signed binary integer numbers using a variety of methods Multiply and divide unsigned and signed binary integer number using a variety of methods including binary shift and two's complement

		complement to multiply and divide unsigned and signed binary integer numbers of no more than 8 bits per number		
CHARACTER ENCODING SYSTEMS	Students will be able to:	Recall that a number such as 89_{10} can be	Textbooks Activity sheets	Students are able to:
More on Hexadecimals	Recall and extend understanding of hexadecimal numbers in	written as a 7-bit number, two groups of 4-bit numbers (nibble), and as	Character encoding table for ASCII, Unicode	Write any decimal number from 0 to 25510 in hexadecimal
Character Sets	computer programming	59_{16} as shown below:		
Character Encoding	Describe character sets in computer programming	$89_{10} = 1011001_2 \\ = 0101 \ 1001_2 \\ = 50$		Identify the types of characters found in a character set
Systems	Understand and use character encoding	= 59 ₁₆ Demonstrate and guide		Convert characters to character codes and vice
	systems: • 7-bit ASCII • Unicode	students to write each hexadecimal (hex) from 0 to 25510 in groups of 4		versa Write names of people and
		bits		places in ASCII and Unicode
		Explain a character set as a defined list of characters (e.g., alphanumeric), recognised by the computer with each character (e.g. the letter q) represented by a number		Explain the benefits and limitations of ASCII and Unicode
		Demonstrate and guide students to use a character encoding table to:		
		 convert characters to character codes 		

LOGIC II	Students will be able to:	 convert character codes to characters Guide students to investigate the benefits and limitations of ASCII and Unicode Discuss using examples; 	Textbooks	Students are able to:
Tautologies and contradictions Conditional Statements De Morgan's Laws Laws of Boolean Algebra XOR, NAND and NOR Logic Gates	Identify tautologies and contradictions Recall and extend conditional statements to: identify the hypothesis and conclusion of a conditional statement convert statements to the standard ("if then") form write the converse, inverse, and contrapositive of a conditional statement describe a counterexample for a conditional statement write the negation of a conditional statement write the negation of a conditional statement State and use De Morgan's laws to determine if statements are logically equivalent.	tautology, a statement which is always true; and contradiction, a statement which is always false. Guide students to identify these two types of statements from everyday and mathematical statements Use everyday and mathematical statements to demonstrate and guide students to extend their understanding of conditional statements Students use given statements and identify, write, convert and otherwise describe statements as required	Activity sheets	 Identify given statements as being a tautology or contradiction Use given statements and identify, write, convert and otherwise describe statements as required Use De Morgan's Laws to write statements that are equivalent to a given statement Draw truth tables for two statements to verify if they are logically equivalent Use the laws of Boolean algebra to solve standard logic questions including constructing truth tables Interpret the results of simple truth tables Solve problems on combinations of logic gates

State and apply the laws of Boolean algebra • commutative • associative • distributive Recall and extend use of the Boolean operators to include: • XOR • NAND • NOR Describe more complex situations using combinations of logic gates	Recall equivalent statements as statements if and only if their truth tables are the same Discuss De Morgan's laws, (previously met in Sets in SSS1): • "not (A and B)" is logically equivalent to "not A or not B" $\sim(p \Box q) \equiv \sim p \Box \sim q$ • "not (A or B)" is logically equivalent to "not A and not B" $\sim(p \Box q) \equiv \sim p \Box \sim q$ Use examples to show the laws of Boolean algebra, including: • commutativity A·B = B·A, A + B = B + A • associativity (A·B)·C = A·(B·C) (A + B) + C = A + (B + C) • distributivity A·(B + C) = (A + B)·(A + C) These rules only apply to AND and OR Guide students to construct truth tables for these laws Review the NOT, AND and OR including

		 constructing truth tables for the logic gates Guide students to construct truth tables for the logic gates: XOR NAND NOR Guide students to write the Boolean expression for each gate Demonstrate and guide students to draw truth tables and write Boolean expressions for logic gates of increasing complexity 		
YEAR 2/TERM 2SIMULTANEOUS LINEAR EQUATIONSSolve Linear Equations in Two Variables: Graphical MethodSolve Linear Equations in Two Variables: Elimination MethodSolve Linear Equations in Two Variables: Solve Linear Equations in Two Variables: Substitution MethodSolve Linear Equations in Two Variables: Substitution MethodSolve Linear Equations in Two Variables: Substitution MethodSolve Linear Equations in Two Variables: Substitution Method	 Students are able to: Solve linear equations in two variables using the graphical method Solve linear equations in two variables using elimination method Solve linear equations in two variables using the substitution method Solve word problems involving linear equations in two variables 	Demonstrate and guide students to use the graphical method to solve two linear equation in two variables of the form: ax + by = c Use sets of equations of increasing complexity, e.g.: • $5x + 2y \square 10$ $x \square 3$ • $5x + 2y \square 10$ $y \square 4$ • $5x + 2y \square 10$	Textbooks Activity sheets	 Students are able to: Solve linear equations in two variables using the graphical method Solve linear equations in two variables using elimination method Solve linear equations in two variables using substitution method Solve word problems involving linear equations in two variables using any

Building Young Futures MBSSE's Senior Secondary School Curriculum

Problems	Solve linear equations in	2 <i>x</i> - <i>y</i> □4	method
Solve Linear Equations in Three Variables: Graphical Method Solve Linear Equations in Three Variables: Elimination Method Solve Linear Equations in Three Variables: Word Problems	three variables using the graphical method Solve linear equations in three variables using the elimination method Determine whether a given ordered triple is a solution to a three=by=three system of equations Solve word problems involving linear equations in three variables	Use the elimination and substitution methods to solve the same problems above Guide students to use any method to solve word problems involving two linear equations involving two variables Demonstrate and guide students to use the graphical method to solve three linear equation in three variables (known as three-by-three, 3×3, system) of the form: ax + by + cz = d Demonstrate how to solve three linear equations in three variables Demonstrate and guide students to substitute given triple into each equation in turn to verify whether or not it satisfies the equation. All three equations must be satisfied for the triple to be a solution Demonstrate how to set up and solve the three linear	Solve linear equations in three variables using the graphical method Solve linear equations in three variables using the elimination method Substitute given triples in given three-by-three systems to verify if they are solutions Verify own solutions to check if they have a valid solution Solve word problems involving linear equations in three variables using the elimination method

		equations in three variables Guide students to set up and solve three-by-three systems of equations from word problem		
SET THEORY II Cartesian Products of Sets Partition of Sets Power Sets	Students will be able to: Describe and write the Cartesian product of <i>n</i> sets Calculate the size of the Cartesian product of sets Describe and find the partition of a set satisfying given conditions Describe and write the power set for small sets	Describe the Cartesian product of two sets as: $A \square B$ = { (a, b) : a \in A, b \in A} i.e., "the set of ordered pairs (a, b) such that a \in A, b \in B" Demonstrate and guide students to write the Cartesian products of two sets, e.g. A = (a, b) and B = (1, 2), then A \square B = { (a, 1), (a, 2), (b, 1), (b, 2) } Ask students to write the Cartesian product for three given sets A, B, C. How would they generalise the product for <i>n</i> sets? Demonstrate and guide students to calculate the size (or cardinality) using the equation: A \square B = A \square B where A is the number of	Textbooks Activity sheets	 Students are able to: Describe the Cartesian product of sets Write the Cartesian product of up to 3 sets Answer questions such as: "How do you know you have found all the sets?" "Is there a systematic way you can list so you have all the sets?" Equate elements of ordered pairs to find missing values, e.g. find x, y where: (2x, 1)= (3, y) Calculate the size of Cartesian product of sets Check by counting the elements of actual sets sets that the relation holds Partition a given set Given the partitions, of a set,

elements in A Describe the partition of a set as a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset Guide students to partition sets in at least two different ways, e.g. $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$ One possible partition is: $\{1\}, \{2, 3, 4\}, \{5, 6, 7,$ 8 } Another partition is: $\{1, 2\}, \{3, 4\}, \{5, 6, 7,$ 8} etc. Guide students to know and use the conditions under which a set is partitioned, e.g. there should be no null set Demonstrate and guide students to first find all the subsets of the given set, (we already know from SSS1, there are 2ⁿ subsets) e.g. $S = \{a, b, c\}, we$ expect 2³ subsets, i.e. 8 subsets: { }, { a }, { b }, { c }, { a, b },

Write the power set of given sets

Calculate the size of the power set of given sets

YEAR 2/TERM 3		<pre>{ a, c }, { b, c }, { a, b, c } Then guide students to write the power set P as: P = { { }, { a }, { b }, { c }, { a, b }, { a, c }, { b, c }, { a, b, c } }</pre>		
PERMUTATIONS, COMBINATIONS AND PROBABILITY Fundamental Principles of Counting Multiplication Principle: Factorial Notation Permutations Combinations Probability of Events	 Students will be able to: Describe and apply the fundamental counting principles to solve simple problems Calculate the permutation of <i>n</i> objects using the multiplication principle Calculate the permutations of a set of <i>n</i> objects taken <i>r</i> at a time Define and calculate the number of combinations of a set of objects Calculate the probability of an event occurring 	Describe the multiplication principle of counting: if there are <i>m</i> ways to do one task, and <i>n</i> ways to do another task, then there are <i>m</i> × <i>n</i> ways to do both tasks (this can be extended to doing 3 or more tasks) Ask pupils what this principle reminds them of (independent events in probability) Demonstrate and guide students to state how many ways, using this principle, there are of, for example, throwing a six on a die and tossing a head on a coin, then verify by completing the sample space Assist students to draw two-way tables and tree diagrams to help in enumerating all the outcomes from similar	Textbooks Activity sheets Calculators Computers Internet Dice Playing cards Coins Spinners	Students are able to: Identify what type of counting problem is in context Use appropriately the multiplication and addition principles of counting to solve simple counting problem Explain permutation to a peer Use the multiplication principle to calculate the permutation of <i>n</i> objects Calculate the permutations of a set of <i>n</i> objects taken <u>r at a</u> time Solve real-life problems on permutation Explain combination to a peer Calculate the number of combinations of a set of objects

experiments and from everyday life Briefly introduce the addition principle of counting: if there are m ways to do one task, and n ways to do another task, and we cannot do both at the same time, then there are m + nways to do both tasks (this can also be extended to doing 3 or more tasks) Describe permutation as the arrangement of a number of objects, n, in order Demonstrate using the multiplication principle to count the ways of ordering the letters P and Q - PQ and QP, i.e., 2 or 2×1 ways Guide students to do the same for three letters, P, Q, R - there are 6 or 3x2x1 ways Assist students to

Assist students to arrange 4 letters – 4x3x2x1 or 24 ways

Therefore, to arrange *n* letters (or objects) will

Solve real-life problems on permutation

Calculate the probability of an event

give n! ways given by: $n! = n(n-1)(n-2)(n-3)...3 \times 2 \times 1$ read 'n factorial', with 0!=1

Guide students to find the permutation of arranging *n* different objects taken *r* at a time, given by: ${}^{n}P_{r} = \frac{n!}{(n-r)!}, r \le n$ (Assume no replacement)

Demonstrate and guide students to use the appropriate button on their calculators to check their answers

Discuss how this formula compares with the multiplication principle

Describe combination as the selection of a number of objects in any order

Guide students to find the combination of selecting *r* objects from *n* given objects, given by: ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}, r \le n$ (Assume no replacement)

Review how to calculate the probability of an event from SSS1, i.e.

		$P(E) = \frac{number of outcomes of an event}{total number of outcomes}$ Using examples, demonstrate and guide the students to calculate the required probability. Assist pupils in using a combination of the multiplication principle, the permutation formula and the combination formula, depending on the context of the question, to find the total number of outcomes and the number of outcomes of an event		
FUNCTIONS Mappings, Relations and Functions	Students will be able to: Describe mappings, relations and functions	Assist students to understand a mapping pairs each element of a given set (the domain) with one or more	Textbooks Activity sheets Graphic calculators Graph paper Computers	Students are able to: Take part in a group discussion on mappings, relations, and functions and
Using Function Notation	Understand and use function	elements of a second set (the range). They are	Internet	their inter-relationships
Types of Functions	notation	usually represented by moping or arrow		Describe different types of mapping and their
Representing Functions	Explain the use of functions in computer programming	diagrams		representations
Domain and Range of	Identify the different types of	Guide students to draw mapping diagrams to		Draw mapping diagrams to represent relations and
Functions	functions	show the different types of mappings and how the		functions
Inverse Functions	Represent functions using tables 	elements are paired (e.g., one-to-one, onto, one-to-		Explain what functions are and use the correct notations
Composite Functions	 mapping diagrams graphically 	many, many-to-one, etc.)		to describe them

 algebraically as sets of ordered pairs Find the domain and range of a function Find inverse functions Find composite functions Functions are related by a rule and repersented by a mathematical functions in mapping diagram. Make a presentation to their peers on the use of mathematical functions in computer programming functions Functions are relations Functions are relations Functions are relations bescribe the elements in the domain with only one element in the function as the set of independent variables, the input values, which the function generates Guide students to use the notation x for the notation x for the elements in the domain, and f(x) (read as function of x or for x), as the function of x or for x), as the function Guide students to use the elements in the function of x or for x), as the function Guide students to use the elements in the function of x or for x), as the function Guide students to use the elements in the function of x or for x), as the function Guide students to use the elements in the function of x or for x), as the function Guide students to use the function of x or for x), as the function Guide students to use the function of x or for x), as the function Guide students to use the function of x or for x), as the function Guide students to use the function of x or for x), as the function Guide students to use the function of x or for x), as the function Guide students to use the function of x or for x), as the function Guide students to the energine of the inverse of a given function in the function of x or for x), as the function Guide students to use the functio			
thing $e_{\alpha} = \alpha(x)$ ('a of x')	 as sets of ordered pairs Find the domain and range of a function Find inverse functions 	understand a relation as a collection of ordered pairs, (x, y), which are related by a rule and represented by a mapping diagram. Functions are relations which pairs one element in the domain with only one element in the range Describe the elements in the domain of a function as the set of independent variables, the input values, which the function processes; and the range as the set of dependent variables, the output values, which the function generates Guide students to use the notation x for the elements in the domain, and $f(x)$ (read as 'function of x' or 'f of x'), as the function which generates the elements in the range. E.g. $f(x) = x^2$ read: 'f of x equals x squared' Other letters are used which denote the same	 differences between mathematical and programming functions Make a presentation to their peers on the use of mathematical functions in computer programming Identify given functions as linear, quadratic, trigonometric, etc., or not a function Represent given functions in a variety of formats Find the domain and range of a given function Find the inverse of a given function Find the domain and range of the inverse of a given function Find the domain and range of the inverse of a given function Find the domain and range of the composite of a given

or *h*(x)

Discuss the similarities and differences between mathematical functions and programming functions, (e.g., both types of function accepts input, does some processing and generates an output)

Discuss why and how mathematical functions are used in computer programming.

Discuss types of functions, e.g.,

- linear functions
- quadratic functions
- higher-order polynomial functions
- rational functions
- logarithmic functions
- exponential functions
- trigonometric functions
- etc.

Discuss how to identify a relation which is not a function, e.g., equation (graph) of a circle

Describe each type of function and assist students to give the general formula and

examples of each type Demonstrate and guide students to represent functions in each of the ways given, including using graphic calculators and computers Provide a selection of functions in one format and guide students to represent them in one or more of the other formats, including as a set of ordered pairs Demonstrate and guide students to find the domain and range of functions given in a variety of formats Demonstrate and guide students to find the inverse, $f^{1}(x)$ of a function, f(x) given in a variety of formats, e.g. if f(x) = 2x, then $f^1(x) = \frac{1}{2}x, x \in \mathbb{R}$ Guide students to make x the subject of more complex functions using y = f(x) for convenience

for f(x) = 3x + 2rewrite y = 3x + 2and make x the subject of the equation`

Discuss a composite function as a combination of two or more functions Guide students to find the composite of two functions f(x) and g(x) as: fog(x) = f[g(x)]which is g(x) followed by f(x)and gof(x) = g[f(x)]which is f(x) followed by g(x)Assist students to find the

Assist students to find the domain and range of the composite function

Guide students to find the inverse of composite functions, as well as the composite of inverse functions Students will be able to:

order and type

matrix

matrix

matrices

operations:

0

0

0

matrix

of two matrices

Identify a matrix, stating its

Explain the use of matrices

etc.

column, identity, zero,

Ask students to write

matrices for their peers to

give the order and type.

Students can also, give

order and type for their

peers to give examples

important in computer

programming

Discuss why matrices are

in computer programming

Identify equal matrices and

Find the sum and difference

Find scalar multiples of a

Find the product of two

Understand and use the

properties of matrix

commutative

associative

distributive

additive and

additive and

multiplicative identities

multiplicative inverses

Find the determinant of a

find missing elements

Find the transpose of a

YEAR 3/TERM 1 MATRICES

of Matrices

Operations

Basic Matrices Concepts

Addition and Subtraction

Scalar Multiplication

Matrix Multiplication

Properties of Matrix

Determinant of Matrices

Matrix Row Operations

Inverse Matrices

Use examples of matrices to guide students to identify a matrix as a rectangular arrangement (called array) of items, usually numbers, into rows and columns. Show the notation for matrices and how elements of a matrix are identified	 Textbooks Activity sheets Computers Internet 	Students are able to: Identify a matrix with <i>m</i> rows and <i>n</i> columns as of order <i>m</i> x <i>n</i> (<i>m</i> by <i>n</i>) Write a matrix using the correct notation Identify elements of a matrix using the correct notation, a_{ij}	
Demonstrate and guide students to show how matrices are written and how to determine the order or dimension ($m \times n$) and the notation for an element, a_{ij}		State the type of matrix depending on the number of rows, columns present Challenge their peers to identify the order and type of a variety of matrices	
Give examples of each type a matrix, e.g., square, triangular, row,		Answer challenges from their peers to identify the order and type of a variety of	

and type of a variety of matrices

Explain why matrices are important to computer programming

Identify equal matrices when given a variety of matrices

Use equal matrices to find missing elements in a matrix

Find the transpose of given

Find the inverse of a matrixGuide students to use the intermet to research and discuss matrices and how it is mainly used in computer programming to solve systems of linear equations, e.g., in graphics and image processingmatricesUse examples of matrices to demonstrate and guide students to dentify equal matrices as having the same order, with the corresponding elements of the tact oguide students to the guide students to find the insisting elements in either matrix (A') ₁₁ = A ₁₁ Perform multiplication of a given matricesUse that fact to guide students to identify equal matrices as having the same order, with the corresponding elements of the two matrices equal.Perform multiplication of a correct given matrix by a given scalarUse that fact to guide students to find missing elements in either matrix (A') ₁₁ = A ₁₁ Verify one or more of the properties using examples of matricesUse that fact to guide students to find the transpose of an matrix, (A') ₁₁ = A ₁₁ Use that fact to guide tartices equations of the matrix, i, (A') ₁₁ = A ₁₁ Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B) ₁₁ = A ₁₁ + B ₁₁ and (A - B) ₁₁ = A ₁₁ - B ₁₁ Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B) ₁₁ = A ₁₁ - B ₁₁ Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B) ₁₁ = A ₁₁ - B ₁₁ Demonstrate using examples how two matrices, A, B are added and subtracted provided they ar				
Perform row operations on a matrixdiscuss matrices and how it is mainly used in computer programming to solve systems of linear equations, e.g., in graphics and image processingCheck the order of matrices, then add or subtract as requiredUse examples of markingSolve equations involving addition and subtraction of matricesSolve equations involving addition and subtraction of matricesUse examples of matrices to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elements of the two matrices equal.Perform multiplication of a given matrix by a given scalarUse that fact to guide students to identify equal matrices as having the same order, with the corresponding elements of the two matrices equal.Find the product of two matricesUse that fact to guide students to find missing elements of guide students how to find the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, $(A^{T})_i = A_{ij}$ Demonstrate using examples of matricesDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order.Use their algorithm to find the determinant of a 2x2 matrixDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order.Extend the algorithm for finding determinant of 2x2 matrix	Find the inverse of a matrix		matrices	
Perform row operations on a matrixits is mainly used in computer programming to solve systems of linear equations, e.g., in graphics and image processingthen add or subtract as requiredUse examples of matrices to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elementsSolve equations involving addition of a given matrix by a given scalarUse that fact to guide students to identify equal matrices equal.Give the condition for matrix multiplication to occurUse that fact to guide students to find missing elements of the two matrices equal.Find the product of two matricesUse that fact to guide students to find the transpose of an $m x n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, (A ¹) ₁₁ = A ₁₁ .Demonstrate and ad subtracted provided they are of the same order: (A + B) ₁ = A ₁₁ + B ₁₁ Use their algorithm to find the determinant of a 2×2 matrix			Check the order of matrices.	
a matrix computer programming to solve systems of linear equations, e.g., in graphics and image processing required Solve equations involving addition and subtraction of matrices Solve equations involving addition and subtraction of matrices Use examples of matrices to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elements of the two matrices equal. Perform multiplication for matrix by a given scalar Use that fact to guide students to identify equal matrices Give the condition for matrix by a given scalar Guide students to find missing elements in either matrix Verify one or more of the properties using examples of matrices Guide students to find missing elements in either matrix, i.e., to get an nx m matrix A by switching the rows and columns of the matrix, (A ¹) ₁ = A ₁ Investigate which matrix Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order. Extend the algorithm to find the determinant of a 2x2 matrix	Perform row operations on			
solve systems of linear equations, e.g., in graphics and image processingSolve equations involving addition and subtraction of matricesUse examples of matrices to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elementsPerform multiplication of a given matrix by a given scalarUse that fact to guide elements in either matrixFind the product of two matricesUse that fact to guide elements in either matrixVerify one or more of the properties using examples of matricesGuide students how to find the transpose of an mx n matrix, (AT) = A_{\mu}Investigate which matrix operations do not follow the properties and whyDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B)_i = A_i + B_iUse their algorithm to find the cates and the same corder: cate and subtracted provided they are of the same order: (A + B)_i = A_i + B_i			required	
graphics and image processingaddition and subtraction of matricesUse examples of matrices to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elementsPerform multiplication of a given matrix by a given scalarUse that fact to guide students to find missing elements in either matrixGive the condition for matrix multiplication to occurGuide students to find missing elements in either matrixFind the product of two matricesGuide students how to find the transpose of an matrix, (A ^T) _{ij} = A _{ji} Investigate which matrix operations do not follow the properties and why i.e., to get an $n \times m$ matrix, (A ^T) _{ij} = A _{ji} Demonstrate using examples how two matrices, A, B are added they are of the same order: (A + B) _{ji} = A _{ij} + B _{ji} Use their algorithm to find the determinants of finding determinants of finding determinants of finding determinants of finding determinants of finding determinants of finding determinants of they are of the same order:				
processingmatricesUse examples of matrices to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elements of the two matrices equal.Perform multiplication of a given matrix by a given scalarUse that fact to guide students to find missing elements of the two matrices equal.Find the product of two matricesUse that fact to guide students to find missing elements elementsVerify one or more of the properties using examples of matricesGuide students how to find the transpose of an $m \times n$ matrix, (A ¹) ₁₁ = A ₁₁ Investigate which matrix operations do not follow the properties using examples of matricesDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B) ₁₁ = A ₁₁ + B ₁₂ Use their algorithm to find the determinant of a 2x2 matrixDemonstrate using examples how two matrices a, B are added and subtracted provided they are of the same order:Use their algorithm to find the determinant of a 2x2 matrix				
Use examples of matrices to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elements of the two matrices equal. Use that fact to guide students to find missing elements in either matrix Guide students how to find the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, $(A^T)_{ij} = A_{ij}$ Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Demonstrate using for the same order for the same order for the same order for the same order				
to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elementsgiven matrix by a given scalarGive the condition for matrix of the two matrices equal.Give the condition for matrix multiplication to occurUse that fact to guide students to find missing elements in either matrixFind the product of two matricesGuide students how to find the transpose of an $m \times n$ matrix, A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, (AT) i.e., to get an $n \times m$ matrix, (AT) i.e., be gran of the same order: (A + B);Use their algorithm to find the determinant of a 2x2 matrixDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B);Extend the algorithm for find the determinants of a 2x2 matrix		processing	matrices	
to demonstrate and guide students to identify equal matrices as having the same order, with the corresponding elements of the two matrices equal.given matrix by a given scalarUse that fact to guide students to find missing elements in either matrixFind the product of two matricesGuide students how to find the transpose of an $m \times n$ matrix, A by switching the rows and columns of the matrix, (A ^T) _{ij} = A _{ij} Verify one or more of the properties using examples of matricesDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B) _i = A _{ij} + B _{ij} Use their algorithm for find the added and subtracted provided they are of the same order: (A + B) _i = A _{ij} + B _{ij}		Use examples of matrices	Perform multiplication of a	
students to identify equal matrices as having the same order, of the two matrices equal.scalarUse that fact to guide students to find missing elements in either matrixGive the condition for matrix multiplication to occurGuide students to find missing elements in either matrixVerify one or more of the properties using examples of matricesGuide students how to find the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ij}$ Investigate which matrix operations do not follow the properties and why i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ij}$ Demonstrate using examples how two matrices, A, B are added and subtracted provided 				
same order, with the corresponding elements of the two matrices equal.Give the condition for matrix multiplication to occurUse that fact to guide students to find missing elements of the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ij}$ Verify one or more of the properties using examples of matricesDemonstrate using examples how two matrix, $(A^T)_{ij} = A_{ij}$ Investigate which matrix operations do not follow the properties and whyDemonstrate using examples how two matricesUse their algorithm to find the determinant of a 2x2 matrixDemonstrate using examples how two matrices A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm for finding determinants of 2x2 matrices to find the				
corresponding elements of the two matrices equal. multiplication to occur Find the product of two matrices Find the product of two matrices use that fact to guide students to find missing elements in either matrix Verify one or more of the properties using examples of matrices Guide students how to find the transpose of an mx n matrix A by switching the rows and columns of the matrix, i.e., to get an n x m matrix, (A ^T) _{ij} = A _{ij} Investigate which matrix operations do not follow the properties and why i.e., to get an n x m matrix, (A ^T) _{ij} = A _{ij} Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B) _{ij} = A _{ij} + B _{ij} Use their algorithm for finding determinants of 2x2 matrices to find the		matrices as having the		
of the two matrices equal.Find the product of two matricesUse that fact to guide students to find missing elements in either matrixFind the product of two matricesGuide students how to find the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ij}$ Investigate which matrix operations do not follow the properties and whyDemonstrate using examples how two matrixes, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2x2 matrixExtend the algorithm for finding determinants of $2x2$ matrices to find the determinants of $2x2$ matrices to find the		same order, with the	Give the condition for matrix	
Find the product of two matricesUse that fact to guide students to find missing elements in either matrixVerify one or more of the properties using examples of matricesGuide students how to find the transpose of an 			multiplication to occur	
Use that fact to guide students to find missing elements in either matrixmatricesGuide students to find missing elements in either matrixVerify one or more of the properties using examples of matricesGuide students how to find the transpose of an $m \times n$ matrix A byInvestigate which matrix operations do not follow the properties and why i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ij}$ Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm for find the determinants of $2x2$ matrices to find the		of the two matrices equal.		
students to find missing elements in either matrixVerify one or more of the properties using examples of matricesGuide students how to find the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ji}$ Investigate which matrix operations do not follow the properties and why i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ji}$ Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinants of $2x2$ matrix			•	
elements in either matrixVerify one or more of the properties using examples of matricesGuide students how to find the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ij}$ Investigate which matrix operations do not follow the properties and whyDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2x2 matrixExtend the algorithm for finding determinants of 2x2 matrices to find theExtend the algorithm for finding determinants of 2x2 matrices to find the			matrices	
Guide students how to find the transpose of an $m \times n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \times m$ matrix, $(A^T)_{ij} = A_{ji}$ properties using examples of matricesDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2x2 matrixExtend the algorithm for finding determinants of $2x2$ matrices to find the				
Guide students how to find the transpose of an $m \ge n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \ge m$ matrix, $(A^T)_{ij} = A_{ji}$ Investigate which matrix operations do not follow the properties and whyDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm for finding determinants of 2×2 matrices to find the		elements in either matrix		
find the transpose of an $m \ge n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \ge m$ matrix, $(A^T)_{ij} = A_{ji}$ Investigate which matrix operations do not follow the properties and whyDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2x2 matrixExplain how to find the determinant of a 2x2 matrixExplain how to find the determinant of a 2x2 matrix		Guide students how to		
$m \ge n$ matrix A by switching the rows and columns of the matrix, i.e., to get an $n \ge m$ matrix, $(A^T)_{ij} = A_{ji}$ Investigate which matrix operations do not follow the properties and whyDemonstrate using examples how two matrices, A , B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2×2 matrixExtend the algorithm to find the determinants of 2×2 matrixExtend the algorithm for finding determinants of 2×2 matrices to find the			mances	
switching the rows and columns of the matrix, i.e., to get an $n \ge m$ matrix, $(A^T)_{ij} = A_{ji}$ operations do not follow the properties and whyDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2×2 matrixExtend the algorithm for finding determinants of 2×2 matrices to find the section to the same order:Extend the algorithm for finding determinants of 2×2 matrices to find the			Investigate which matrix	
columns of the matrix, i.e., to get an $n \ge m$ matrix, $(A^T)_{ij} = A_{ji}$ properties and whyDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2x2 matrixExplain how to find the determinant of a 2x2 matrixUse their algorithm to find the determinant of a 2x2 matrixExtend the algorithm for finding determinants of 2x2 matrices to find the determinants of				
i.e., to get an $n \ge m$ matrix, $(A^T)_{ij} = A_{ji}$ Explain how to find the determinant of a 2×2 matrixDemonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2×2 matrixExtend the algorithm for finding determinants of 2×2 matrices to find the			-	
$(A^{T})_{ij} = A_{ji}$ determinant of a 2×2 matrix $Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: (A + B)_{ij} = A_{ij} + B_{ij} Extend the algorithm for finding determinants of 2×2 matrices to find the$		i.e., to get an <i>n</i> x <i>m</i>		
Demonstrate using examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ Use their algorithm to find the determinant of a 2×2 matrixExtend the algorithm for finding determinants of 2×2 matrices to find the			•	
examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ determinant of a 2×2 matrixExtend the algorithm for finding determinants of 2×2 matrices to find the		$(A^{T})_{ij} = A_{ji}$	determinant of a 2x2 matrix	
examples how two matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ determinant of a matrix Extend the algorithm for finding determinants of 2x2 matrices to find the		Demonstrate using	Use their algorithm to find the	
matrices, A, B are added and subtracted provided they are of the same order: $(A + B)_{ij} = A_{ij} + B_{ij}$ matrixExtend the algorithm for finding determinants of $2x2$ matrices to find the		5	0	
and subtracted provided they are of the sameExtend the algorithm for finding determinants of $(A + B)_{ij} = A_{ij} + B_{ij}$ 2×2 matrices to find the			matrix	
they are of the sameExtend the algorithm fororder:finding determinants of $(A + B)_{ij} = A_{ij} + B_{ij}$ 2×2 matrices to find the				
$(A + B)_{ij} = A_{ij} + B_{ij}$ 2×2 matrices to find the				
and $(A - B)_{ij} = A_{ij} - B_{ij}$ determinant of 3×3 matrices				
		and $(A - B)_{ij} = A_{ij} - B_{ij}$	determinant of 3x3 matrices	

Guide students to add and subtract given matrices

Demonstrate scalar multiplication to show how each element of the matrix is multiplied by the scalar to create another matrix of the same order and type $k(A_{ij}) = kA_{ij}$

Guide students to use this fact to carry out scalar multiplications

Discuss using examples how scalar multiplication of two matrices A, B occurs only when the number of columns in the first matrix, i, is equal to the number of rows in the second, j, i.e. $(AB)_{ij} = a_i \cdot b_j$

Demonstrate and guide students to find the product of two matrices

Show students the properties of operations of matrices using examples for $m \ge n$ matrices A, B, C, e.g., for matrix addition: • commutative Find the inverse of a given 2×2 matrix using the standard algorithm

Find the inverse of a given 3x3 matrix using the extended algorithm

Perform and use the correct notation for single row operations on a matrix, e.g. $R_2 \square R_1, -3R_3 \square R_3, R_1+R_3 \square$ R_3

Perform and use the correct notation for multiple row operations on a matrix, e.g. $2R_1 - 4R_3 \square R_3$ Building Young Futures MBSSE's Senior Secondary School Curriculum

A + B = B + A• associative (A + B) + C = A + (B + C)• additive identity A + 0 = 0 + A = Afor a unique *m* x *n* matrix, 0 • additive inverse A + (-A) = 0 = (-A) + Awhere -A is a unique m x n matrix Guide students to use matrices to prove these properties Demonstrate using a 2x2 matrix, A, the algorithm to find the determinant, symbolised by det(A) or |A|, of the matrix Guide the students to write their own algorithm using pseudocode and flowchart of how to find the determinant of a matrix. Guide them to exchange their algorithms with each other use to find determinants of 2×2 matrices Guide students to extend their algorithm to finding the determinant of 3x3 matrices

Share and discuss a few of the algorithms and make improvements Define the inverse, A⁻¹, of the matrix, A, as: $A \times A^{-1} = A^{-1} \times A = I$ where I is the identity matrix Demonstrate and guide students to find the inverse of a matrix using the determinant and the standard algorithm Guide students to extend the algorithm as demonstrated to find the determinant of 3x3 matrices Demonstrate and guide students to perform row operations on a matrix using the three operations: • switching rows • multiplying a row by a non-zero number adding rows Demonstrate the notation

Demonstrate the notation for showing the row operation. For example: – switching rows 1 and 3 is written as $R_1 \square R_3$

		- multiplying row 2 by 3 is written as $3R_2 \square R_2$ Guide students to perform these operations iteratively and in combination till they get the required matrix		
SYSTEMS OF LINEAR EQUATIONS Solve Linear Equations in Two and Three Variables: Inverse Matrix Method Solve Linear Equations in Two and Three Variables: Gaussian Elimination Method Solve Linear Equations in <i>n</i> Variables: Algorithm	 Students will be able to: Explain why matrices are used to solve systems of linear equations Represent a linear system as a matrix Solve a 2×2 system of linear equations using an inverse matrix Solve a 3×3 system of linear equations using an inverse matrix Recognise the Gaussian elimination as an algorithm used to find the solution of a system of linear equations in <i>n</i> variables Write the augmented matrix of a system of equations Write the system of equations from an augmented matrix 	Discuss why matrices are used to solve systems of linear equation Use a system of linear equations in two variables and demonstrate how it can be represented as a matrix by using the co- efficients of each equation to form a row of the matrix Guide students to make sure that both equations are in the linear equation form: ax + by = c before they are written in matrix form: Ax = B where A, B, x are matrices Review how to find determinants and inverse of a matrix.	Textbooks Activity sheets	 Students are able to: Discuss why matrices are used to solve systems of linear equations Represent a 2×2 (or 3×3) linear system as a matrix Solve a system of 2×2 linear equations using an inverse matrix Solve a system of 3×3 linear equations using an inverse matrix Recognise Gaussian elimination method can be used to solve a system of linear equations Write an augmented matrix from a given linear system from a given linear system Write a linear system from a given augmented matrix Perform row operations on a matrix

Perform row operations on a matrix Solve a 2×2 system of linear equations using Gaussian elimination Solve a 3×3 system of linear equations using Gaussian elimination Write an algorithm to solve a system of linear equations in <i>n</i> variables using Gaussian elimination	Using the matrix representation: Ax = B guide students to find the unknown variables as: x = A ⁻¹ b Demonstrate and guide students to perform a matrix multiplication of A ⁻¹ and b, and equate the resulting matrix with the unknown variables Guide students to solve a system of 3×3 linear equations using an inverse matrix Discuss how the Gaussian elimination method uses matrices to solve systems. Show how the steps follow an algorithm (which can be written as a program) Demonstrate and guide students to write the system as an augmented matrix	

Solve 2x2 systems of linear equations using Gaussian elimination

Verify the solution to the linear system

Solve and verify solution for 3x3 systems of linear equations using Gaussian elimination

Use pseudocode and flowchart to write an algorithm to solve a system of linear equations in *n* variables

Demonstrate and guide students to also be able to write a system from an augmented matrix

Review how to perform row operations till they get the required matrix (an upper triangular matrix with all the element in the main diagonal equal to 1)

Demonstrate and guide students to solve a 2x2 system of linear equations by following the algorithm:

- represent the linear system as a matrix
- write the augmented matrix of the system of equations
- perform row operations on the matrix to get the required matrix
- use back substitution to find the solution for each variable in the system

Guide students to use Gaussian elimination to

solve a 3x3 linear system Guide students to write pseudocode and flowchart to solve a 2x2 system of linear equations using Gaussian elimination

Extend the algorithm to an *n* by *n* system

RESOURCES

Textbook Information sheets on the use of non-decimal number systems in computers Activity sheets Computers / Smart Phones / Calculators Internet Objects or pictures of objects 2D attribute shapes Sets of number cards with common attribute e.g., odd, even, prime, square Sets of cards with names e.g., places, capital cities, flowers, surnames starting with same initial