## The New Senior Secondary Curriculum for Sierra Leone

## Subject syllabus for Fundamental of Mathematics Subject stream: Mathematics and Numeracy



This subject syllabus is based on the National Curriculum Framework for Senior Secondary Education. It was prepared by national curriculum specialists and subject experts.

## Curriculum Elements for Fundamental of Mathematics

## Subject Description

Mathematics is the study of how we manipulate numbers and symbols to deal with quantities, space, shapes, and change. It is a subject that helps us understand and demonstrate relationships, order, structure, configurations, generalizations, and abstractions as we encounter and observe different aspects of our daily lives and our thoughts and imaginations. It evolved from basic activities of counting and measuring objects and describing shapes to now include abstract ways of using numbers and symbols to study changes in quantities and sets. Different branches of Mathematics include Arithmetic, Algebra, Geometry, Calculus and Statistics. When Mathematics is used independently in its abstract form to understand and predict different phenomenon, it is referred to as pure mathematics. When it is used to address real-life problems under various disciplines (e.g. Engineering), it is called applied mathematics.

Rationale for Introduction of fundamentals of Mathematics in the Senior Secondary School Curriculum Fundamentals of Mathematics in the Senior Secondary School curriculum builds on learning at the JSS level. This course provides a solid understanding of the fundamentals of mathematics that are essential for individual progress and success as well as national progress towards the objective of mathematically competent and skilled Sierra Leonean youth. The course is intended to equip students with basic tools for understanding and contributing towards positive change(s) in the world. Such tools include skilled command over transferrable skills like logical reasoning, problemsolving, data analysis, organization, critical thinking, time management, decision making, and communications which student can continue to utilize in different academic and professional fields. Finally, it promises excitement for learners about discovering and understanding different mathematical concepts.

## General Learning Outcomes [Broad Goals]

The general aim of this course is to enable students to:

- Appreciate and enjoy the benefits of using mathematics fundamentals in various areas.
- Improve their chances of becoming critical thinkers, problem solvers and independent thinkers.
- Develop improved communication skills through the practice of expressing ideas with mathematical precision.
- Improve learning in general through the use of logical thinking, analytical skills, and problem-solving approaches.
- Contribute to society with financial capability, enterprise/entrepreneurship, workplace competence and real life problem-solving skills.

|  | SSS 1 | SSS 2 | SSS 3 |
| :---: | :---: | :---: | :---: |
| Term 1 | - Integers <br> - Fractions, Decimals and Percentages <br> - Ratio, Proportion and Rates <br> - Powers and Roots <br> - Indices <br> - Standard Form | - Surds [Radicals] <br> - Approximation/Estimation <br> - Set Theory <br> - Representation: Pictogram, Bar charts, Pie charts <br> - Grouping data <br> - Estimate Mean from group data <br> - Cumulative Frequency graphs <br> - Deciles and Percentiles | - Logarithm <br> - Logical reasoning <br> - Variance and standard deviation <br> - Angles of elevation/depression <br> - Bearings <br> - Circle Theorems <br> - Calculus |
| Term 2 | - Algebraic Expressions <br> - Algebraic Manipulation <br> - Equations - Linear, Quadratic, Simultaneous <br> - Number Bases <br> - Equations and Formulae [change of subject] <br> - Undefined Algebraic fractions | - Graphs of Linear and Quadratic functions. <br> - Manipulating Algebraic Fractions <br> - Linear inequalities/Linear Programming and Quadratic Inequalities. <br> - Relations, Mapping <br> - Sequence and Series <br> - Matrices and Determinants | - Area of sector and length of arc <br> - Similarities <br> - Transformation <br> - Graphs of Trigonometric functions <br> - Trigonometric Ratios <br> - Vectors |
| Term 3 | Statistics <br> Definition of Data and types of Data <br> Statistical Measures <br> - Averages and their advantages \& disadvantages <br> - Probability <br> - Language of Probability <br> - Probability Scale <br> - Probability of events happening <br> - Theoretical Probability/Experimental Probability <br> - Mutually exclusive events <br> - Expected Frequency | Shape, Space Measure <br> - Angles, Line and Triangles <br> - Polygons and Congruency <br> - Lines of Symmetry and rotational symmetry <br> - Construction <br> - Loci <br> - Circles <br> - Mensuration of 2D objects <br> - 3D shapes and Volumes <br> - Pythagoras' Theorem <br> - Trigonometry in right angle triangle and non-right |  |


| Topic/Theme/Unit | Expected learning outcomes | Recommended teaching methods | Suggested resources | Assessment of learning outcomes |
| :---: | :---: | :---: | :---: | :---: |
| Year 1/Term 1 |  |  |  |  |
| Numbers and the Number System <br> INTEGERS | Students will be able to: <br> Explain and use integers <br> Explain Place Value <br> Explain and use directed numbers in practical situations. <br> Use the four rules of addition, subtracting, multiplication and division. <br> Use order of operation [BIDMAS]. <br> Use the terms 'odd', 'even', Prime Numbers', 'factors', and multiples' <br> Identify prime factors, common factors and common multiples. | Teacher Modelling and explanations. <br> Examples: $\text { Find } \begin{aligned} & 2 / 3 \text { of } 180 \\ = & 2 / 3 \times 180 \\ = & 120 \end{aligned}$ | Teacher Handbook Leaflets, Magazines, Newspapers, Bank Reports etc. showing percent, decimals, and fractions | Standard Questions from textbooks and past papers. <br> Probing Questions <br> Which number up to 100 has the most factors? <br> Which number less than 100 has exactly three factors? <br> The sum of four even numbers is a multiple of 4 . When is this statement true? When is it false? <br> Can a Prime Number be multiple of 4 ? Why? <br> Multiplication makes numbers higher. When is this statement true? When is it false? |
| Fractions, Decimals and Percentages | Students will be able to: Convert between fractions, decimals and percentages. <br> Work using equivalent fractions. | Teacher Modelling: $0.65=\frac{65}{100}=\frac{13}{20}$ <br> Change 0.3 to a fraction in its simplest form. <br> Let Fraction = F |  | Explain to me which fractions or percentages you can easily work out in your head. |

Add, subtract, multiply and divide fractions and mixed numbers.

Order fractions and calculate fraction of any given amount.

Express a given number as a fraction of another number.

Explain that 'percentage' means 'number of parts out of $100^{\prime}$

Express a number as a percentage of another number.

Express a percentage as a fraction and as a decimal.

Calculate percentage increase and decrease.

Calculate percentage profit and percentage loss.

Use multiplier to calculate reverse percentage [or finding the original].

Distinguish between simple and compound interest and calculate Compound Interest.
$\mathrm{F}=0.3333$ [multiply by 10]
$\begin{aligned} 10 F & =3.3333 \\ 9 F & =3\end{aligned}$
$F=\underline{3}=1 / 3$
$\frac{3}{9}$
Convert 0.13 to a fraction.
Let Fraction = F
$\mathrm{F}=0.131313$.
$100 F=13.131313$ $\qquad$
[Subtract]
$99 F=13$
$F=\underline{13}$
$\frac{13}{99}$

Convert 0.23 to a fraction
Let $\mathrm{F}=0.23333 \ldots$... Multiply by 10
.10F $=2.3333 \ldots \ldots . \quad$ ignore the first equation $100 \mathrm{~F}=23.333 \ldots$. multiply this new equation by
$90 \mathrm{~F}=21$
10 and
subtract
$F=\frac{21}{90}$
$\mathrm{F}=\underline{7}$

## Multiplier

Explain to students that when a quantity is increased by $20 \%$ for example the new quantity is now $120 \%$ of the original [100+20]
$120 \%$ means $120=1.2$
100
This is called the multiplier.

To calculate $10 \%$ of a quantity, you can divide the quantity by 10 . So to calculate $20 \%$, you must divide by 20. True or False? Explain.

What do you look for first when you are ordering numbers with decimals? Give me a number
between 0.13 and 0.17 . Which of the two numbers is it closer to?
Give me a fraction between $1 / 3$ and $1 / 2$. Explain how you did it.

How do you go about finding the multiplier to calculate an original amount after percentage increase or decrease?

Can you find the multiplier if it was a fractional increase or decrease? Explain.

Given a multiplier how can you tell whether this would result in an increase or a decease?

Can you do fraction division without changing the division to multiplication and inverting the fraction? Explain.

Calculate depreciation
Explain and do calculations involving hire purchase and percentage error.

Calculate repeated percentage changes.
. when a quantity is increased by $15 \%$, the new quantity becomes $115 \%[100+15]$ of the original quantity. $115 \%$ means
$115=1.15$. This is the
100 multiplier
Similarly, when a quantity is reduced by $150 \%$, The new quantity is $85 \%$ [100-15] of the original amount. 85\%

This means $\underline{85}=0.85$.
100
This is the Multiplier.
Example: In a sale, prices were reduced by $30 \%$. The sale price of a shoe was Le140,000.00. Calculate the original price.

Solution
$30 \%$ reduction means $100-30$ which is $70 \%$ ie Multiplier is 0.7
Let original price $=\mathrm{N}$
$N \times 0.7=140000$
$N=\frac{140000}{0.7}$
$\mathrm{N}=$ Le200,000.00
Example
Fatima invests Le300,000.00 in a bank at 4\% Compound Interest. Calculate the total amount after a period of 3 years.
Solution
$4 \%$ Interest means multiplier is [100 +4]
$104 \%$ which is equal to 1.04 . Compound Interest means this is applied each year.
So $1^{\text {st }}$ year $=3000000 \times 1.04$
$2^{\text {nd }}$ year $=[3000000 \times 1.04] \times 1.04$
$3^{\text {rd }}$ " $\left.=3000000 \times 1.04 \times 1.04\right] \times 1.04$
This is neatly written as
$300,000 \times 1.04^{3}$
$=$ Le 337,459.20

How do you know that a fraction will produce recurring or terminating decimal?

Which of the following statements is true or false?
-All terminating decimals can be written as fractions
-All recurring decimals can be written as fractions.
-All numbers can be written as a fraction.

Give students a set of problems involving repeated percentage changes and a set of calculations. Ask pupils to match the problems to the calculations.

A store gives a $20 \%$ discounts but you must also pay a $15 \%$ Tax [G.S.T]. What would you prefer to be calculated first. The discount or the tax?

| Ratio, Proportion and Rates | Students will be able to: Use ratio notation including reduction to its simplest form and its links to fraction notation. <br> Divide any amount in any given ratio or ratios. <br> Use the process of proportionality to calculate unknown quantities. <br> Carry out calculations on Direct inverse, Partial and Joint variations. <br> Calculate rates of work, foreign exchange, density [including population density, speed, distance and time. | Teacher Modelling <br> Incorporate real life examples. <br> Example: it will take a certain number of workers to lay a certain number of building blocks. How many men will it take to lay a certain number of blocks? | Teacher Handbook | Students answer standard questions from Textbooks and Examination board past papers |
| :---: | :---: | :---: | :---: | :---: |
| Powers and Roots | Students will be able to: Identify square and cube numbers. <br> Calculate square, square roots, cube and cube roots. <br> Find highest common factor [HCF] and Lowest Common Factor [LCF] | Teacher Modelling | Teacher Handbook Calculators | Standard questions on Powers and roots. <br> Probing Questions <br> Are the following statements Always, Sometimes or Never true? -Cubing a number makes it bigger. <br> -The square of any number is always positive. |

-You can find the square root of any number.
-You can find the cube root of any number.

Three security guards each flash their lights at intervals of 5 minutes, 10 minutes and 15 minutes respectively. If they all flash their light at 9.00p.m., when next will they all flash their lights at the same time?
Students answer standard questions from past examination board papers.

## Probing Questions

What is the value of $c$ in
the question?
$48 \times 56=3 \times 7 \times 2^{c}$
What does the index of $1 / 2$ represent?

Standard questions on standard form from past questions

## Probing questions

What are the key conventions when using standard form?

## Year 1/Term 2

| Algebra | Students will be able to: Collect like terms | Teacher Modelling | Teacher Handbook |
| :---: | :---: | :---: | :---: |
| Algebraic Expressions | Expand single brackets. | When modelling, explain to students that factorization can be viewed as a reverse process of expansion. |  |
| -collecting terms -Expansion | Expand double brackets |  |  |
| -Factorization | Factories algebraic expressions by Linear factorization, Difference of 2 squares, Quadratic factorisation, Group factorisation | expressions, get children to work in groups of 4 or 5. <br> -recall the process of expanding double brackets and simplifying. Example: $\begin{aligned} & (x-3)(x+4) \\ & x(x+4)-3(x+4) \\ & x^{2}+4 x-3 x-12 \end{aligned}$ |  |
|  | Solve word problems in context. | $x^{2}+x-12$ |  |
|  |  | Give students several quadratic expressions with coefficient of $x^{2}=1$ and ask them to work backwards and find the two brackets that were multiplied together to produce the quadratic expression given. |  |
|  |  | When students think they have found their two brackets get them to expand their brackets and simplify to self-check if they are correct. |  |
|  |  | Students need support with the manipulation of signs. <br> Get pupils to clearly write down their rules and how they got their answers. Get pupils to do presentation to the class. -clarify misunderstandings and misconceptions. |  |

How do you go about expressing a very small number in standard form?

Students answer standard questions especially those from past Exam Board
Questions.

## Probing Questions

What is a quadratic expression?
How would you recognise a quadratic expressions?

Why is $(x+5)(2 x-3)$ a
quadratic expression?
What is the difference between a quadratic expression and a cubic expression?

When $(x+6)(x+3)(x-1)$ is expanded and simplified what expression will you get?

Give students examples of multiplying out a bracket with errors. Ask them to identify and talk through the errors and how they should be corrected.

Example:

$$
\begin{aligned}
& 4(b+2)=4 b+2 \\
& 3(p-4)=3 p-7 \\
& -2((5-b)=10-2 b \\
& 12-(n-3)=9-n \\
& \text { Answer standard } \\
& \text { questions on algebraic } \\
& \text { Manipulation }
\end{aligned}
$$

## Teacher

Handbook

| Students will be able to: | Teacher Modelling E.g. write as a single fraction; | Teacher Handbook |
| :---: | :---: | :---: |
| Manipulate algebraic | $\frac{3 x+1}{x+2}-x-2$ |  |
| fractions with the | $X+2 \quad x-1$ |  |
| numerator and/or the |  |  |
| denominator being a | Simplify: |  |
| numeric, linear or | $\underline{2 x}+3 \mathrm{x}$ |  |
| quadratic. | $4 x^{2}-9$ |  |
|  | Example |  |
| Express a quadratic | Write $2 x^{2}+6 x-1$ in the form |  |
| expression in completed square form | $a(x+b)^{2}+C$ |  |
| Students will be able to: | Teacher Modelling of various types of Linear equations | Teacher Handbook |
| Solve Linear equations | Examples |  |
| including equations with |  |  |
| brackets, equations with | [i] solve |  |
| the unknown on both sides of the equals to | $3(x+2)=4 \quad[$ Expand $]$ |  |
| sign, and equations with | $3(x+2)=4 \quad$ [Expand] |  |
| fractions. | $3 x+6=4$ subtract 6 from both sides |  |
| Construct and solve | $3 x=-2 \quad$ Divide by 3 on both sides. |  |
| Linear Equations from |  |  |
| Word problems and in context. | $X=-2 / 3$ |  |
| Solve equations involving algebraic fractions | [ii] $1 / 3(X+2)=2 / 5(x-10)$ simplify |  |
| Example | To get rid of fractions, multiply by the LCM of |  |
| Solve: $1+\underline{1}=\underline{7}$ | the denominators which is 15 . |  |
| X $2 x+1 \quad 10$ | $15 \times^{1 / 3}(x+2)=15 x^{2 / 5}(x-10)$ |  |
|  | $15 \times 1 / 3(\mathrm{x}+2)=15 \times 2 / 5(\mathrm{x}-10)$ |  |

- Linear
- Quadratic

Simultaneous

## Algebraic

 Manipulation
## Equations

equations with brackets, equations with the unknown on both sides of the equals to sign, and equations with

Construct and solve Linear Equations from Word problems and in

Solve equations involving algebraic fractions
Example

$$
\text { Solve: } \frac{1}{X}+\frac{1}{2 x+1}=\frac{7}{10}
$$

$5(X+2)=6(X-10) \quad$ Expand
$5 X+10=6 x-60$
$\quad$ Subtract $5 x$ from both sides
$10=x-60 \quad$ Add 60 to both sides
$70=X$
$X=70$

The cover method could also be used for simple examples.

Quadratic Equations Students will be able to: Teacher Modelling:
Solve Quadratic
equations using the following methods: Factorisation method; Completing the square method; Formula method; Forming quadratic Equations with given roots.

## Example

Solve by factorising
$x^{2}-8 x+12=0$
First factorise $x^{2}-8 x+12$
$(X-6)(x-2)=0$
This means that both or one of the brackets must be equal to zero because their product is zero.

$$
\begin{aligned}
& \text { So } X-6=0 \\
& X=6 \quad x-2=0 \quad x=2
\end{aligned}
$$

So two answer $x=6$ and $x=2$
perimeter is 24 cm . Find its area.

In an ice cream shop, a large cone of ice cream costs 40p more than the small cone. The cost of 2 large cones is the same as 3 small cones. Find the cost of a large ice cream cone. Find the cost of the small ice cream cone.

How do you go about constructing equations from information given in a problem? How do you check whether the equations work?
Students to answer standard questions in solving Quadratic equations including from Exam Board past papers.

## Probing Questions

What clues would you be looking for to warn you that a given quadratic equation cannot be solved by factorisation?

How would you apply the technique of completing the squares to a quadratic
equation with coefficient of

## Simultaneous Equations

## Students will be able to <br> Solve Linear simultaneous equations <br> Solve 1 Linear and 1 quadratic equation <br> Solve simultaneous equations from word problems.

Teacher Modelling
Model the solving of two Linear simultaneous equations by method of elimination and method of substitution.

Also model solving of 1 Linear and 1 Quadratic by substitution method.

Example: $2 x+3 y=17,3 x-5 y=35$
Example: $y=2 x-3$ and
$y=x^{2}-4 x+5$
Example $y=x^{2}+x+3$ and $2 x+y=1$
Solve by completing the square to 2d.p
$\mathrm{X}^{2}-2 \mathrm{x}-10=0$
First eliminate the constant from the left-hand side by adding 10 to both sides.
$x-2 x=10$

Take the coefficient of
$x \rightarrow-2$
halve it $\rightarrow-1$
square the answer $\rightarrow$ $+1$

Add this to both sides of the equation above
$x^{2}-2 x+1=10+1$
$X^{2}-2 x+1$ is said to be a perfect square
which factorising to $(x-1)^{2}$
So substituting
$(x-1)^{2}=11$
$X-1= \pm \sqrt{11}$
$X=1 \pm \sqrt{11}=$
$X=1-\sqrt{11}=$
Solve $2 x^{2}-8 x+5=0$

Teacher
Handbook
$x^{2}$ greater than 1.
Students answer standard question simultaneous equations.

## Probing Questions

How would you know that
a problem given will need
to be solved using
simultaneous equations?
What is confusing when using the elimination method to solve simultaneous equation?

What is confusing when using substitution method to solve simultaneous equations.

Can you think of a better strategy to avoid such confusions?

A cycle shop has a total of 36 bikes [okada] and tricycles [Kekeh] in stock Altogether there are 80 wheels. How many bikes [okada] and how many
Tricycles [kekeh] are there?

Using the quadratic formula to 2 decimal places.
Substitute $\mathrm{a}=2$,
$B=-8$ and $\mathrm{c}=5$ into the quadratic formula.

## Number bases

## Equations and

 FormulaeChange of subject Substitution into formulae

Teacher Modelling
Explain the concept of number bases and the idea of counting in groups.

Teacher Handbook Students will be able number bases in counting systems.

Convert numbers from one base to another. Perform basic operations on number bases.

Solving equations involving number bases.

Students will be able to: Teacher modelling on rearranging formula.
Rearrange a formula or equation to change the subject; including cases where the subject appears more than once or has powers.

Evaluate a letter by substituting into a formula

Explain that in a formula, a letter usually stands alone on one side of the equal to sign whilst the other letters and/or numbers are al on the opposite side. The letter that stands alone is called the subject of the equation.

Example
Make $r$ the subject of $\mathrm{V}=4 \pi \mathrm{r}^{3}$

Students answer standard questions on numbe bases.

## Probing Questions

What will happen to the digits if a number in base two when it is:
[a] multiplied by two
[b] divided by two
How many different symbols exist in a base five system? What are they?

The Limbas and Sherbro people count in base five Can you investigate what base is counting done in your language and any two other languages? Standard Questions on change of subject.

## Probing questions:

What do you mean by the subject of a formula?

How do you decide on the steps you need to take to rearrange a formula?
given the values of other letters.
$T=2 \pi \sqrt{\mathrm{~L} / \mathrm{G}}$
When modelling, explain to students that the process of changing the subject of a formula is similar to the process of solving equations

This is because when solving an equation in $x$ for example, we end up with $x$ on its own on one side of the equal to sign. Model substitution into a formula.

## Undefined Fractions Students will be able to:

Explain that an undefined fraction is a fraction with denominator equal to zero.

Solve problems on undefined fractions

## Teacher Modelling

Examples
For what value of $x$ is the fraction
$3 x+2 \quad$ undefined?
$x+4$
Solution
$\mathrm{X}+4=0$
$X=-4$

For what Value[s] of x is the fraction
$3 x^{2}-4$
$x^{2}-16$
Undefined?
Solution
$X^{2}-16=0$
$X^{2}=16$
$X= \pm \sqrt{16}$

What are the important conventions?

What strategies would you use to rearrange a formula where the required subject occurs twice?

What are the similarities and differences between rearranging a formula and solving an equation?

What precautions would you take when substituting negative values into a formula?
Students answer standard questions on undefined fractions.
$X=4$ or -4
Or use the difference of 2 squares approach.

## Year 1/Term 3

Definition of data and types of data

Primary/Secondary
data,
Categorical/Numerical data,
Discrete/Continuous data.

Statistical Measures
Concept of average for data in form of a list or a Frequency Table.

Mean, Median, Mode and Range for discrete data set.

Know the advantages and disadvantages of

Students will be able to: Open question to the class: "What is data?"
Define data in their own words.

Distinguish between Primary and Secondary data.

Distinguish between categorical data and numerical data

Students should know that numerical data can be discrete or continuous and understand the usage of these words.

Students will be able to:
Calculate mean, median, mode and range for discrete data set.

Examine data and identify extreme values [outliers].

Explain the advantages and disadvantages of using Mean, Median and Mode.

Record pupils' responses on the board with probing questions to clarify misconceptions and collectively answer question 'What is data?'

Teacher Modelling for primary/secondary data, categorical/numerical data, and Discrete/Continuous data

Display keywords around classroom (and corridor)
esson activity
Select seven volunteers to come to the front of the class.
Get the students to arrange themselves in ascending order of their heights. [from left to right facing the class]
Explain to class that the student in the middle is said to have the Median height. The student on the far left has the lowest height and the student on the far right has the highest height.
Explain that heights range from the shortest to the tallest and the range can be calculated

Display of different types of data.

Measuring instruments: Ruler, Tape measures
cards/vanguard
Teacher's Handbook

Students are asked to group given data into categorical or numerical and discrete or continuous using matching cards.

Students to work in pairs or in groups to look around the classroom or local environment and produce:
5 real-life examples each of categorical and numerical data.
5 real-life examples each of measurements that will produce discrete and continuous data.

Standard questions on Mean, Median, Mode and Mode.

## Problem solving:

Find a set of five positive whole numbers with:
Range 10
Mode 4
Median 6
Mean 7
Is there more than one possible set?
using Mean, Median and Mode.
by subtracting the smallest height from the largest height.
Repeat this exercise for even number of students e.g 10 students.

Ask students if they notice anything different about the Median. Accept different responses
e.g. there are 2 students
-It is between the 2 students.
-Discuss with students the best way of resolving the Median height. le Adding the 2 middle heights and dividing by 2.

Get students into small groups. Give each group sets of numbers to arrange in order of size. Some sets of numbers should contain extremely high and low values.

Students to discuss in their groups and talk about possible outliers and the Median.

Model with whole group: calculation of Mean, Median, Mode and Range.

Students answer standard question on Mean, Median, Mode and Range.

Summarise advantages and disadvantages of Mean, Median and Mode.

Repeat for a set of six numbers. Find as many possible answers as you can.

## PROBING QUESTIONS

Is the Median the most appropriate average to calculate for this data set?
Convince me.
Convince me that the Mean is the most appropriate average to calculate for this data set Convince me that the
Mode is the most appropriate average to calculate for this data set

| Year 2 Term 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Surds [Radicals] | Students to be able to: Add and subtract Surds. <br> Multiply and divide surds. <br> Expand and simplify Surds. <br> Rationalise denominators [including binomial denominators] | Teacher Modelling <br> Model standard questions on surds. <br> Surds of the form <br> $\underline{\mathrm{a}}, \mathrm{a} \sqrt{b}$, and $\mathrm{a} \pm \sqrt{ } \mathrm{b}$ <br> $\sqrt{ }$ b <br> Where $a$ is rational and $b$ is a positive integer | Teacher Handbook | Standard questions on Surds. |
| Approximation and Estimation | Students will be able to: Round numbers toa given number of decimal places or significant figures. <br> Identify and solve problems using Upper and Lower bounds where values are given to a degree of accuracy. | Teacher Modelling | Teacher Handbook | Standard Questions are rounding to decimal places and significant figures. <br> Questions on upper and lower bounds. |
| Set Theory | Students will be able to: <br> Explain what a set is <br> Differentiate between types of sets <br> Use the language and notations of set. <br> Interpret, draw and use Venn diagrams to solve problems. | Teacher Modelling Introduce the topic of set. Talk about language and notations of set e.g. members, cardinality, intersection, union, compliments. <br> Talk about types e.g. universal, unit set, null set, sub set etc. Interpret and draw Venn diagrams. | Teacher Handbook | Answer standard questions on set theory from Examination Board past papers. |
| Representation of data using: | Students will be able to: <br> Recognise, construct and interpret pictograms, bar | Display various charts as seen in real life situations E.g. newspapers [Awoko business], adverts, magazines, websites. | Newspapers, reports, advertisement, magazines. | Students are given secondary data and asked to construct appropriate charts. |

-pictogram, bar charts, Pie charts -use appropriate methods of tabulation to enable the construct of statistical diagrams. -interpret statistical diagrams.

## Grouping Data

Construct grouped frequency table with equal class interval.

Identify the modal class interval from grouped frequency table

Frequency diagram from group discrete data

Histograms from grouped continuous data.

Frequency Polygons. polygons and compare
two or more sets of data wor more sets of data using super imposed frequency polygons.
Statistical Measures
charts, [vertical, horizontal and composite] and pie chart.

Use ICT [Spreadsheet] to design charts.

Construct and interpret Histograms from grouped continuous data

Construct frequency

Get students to identify charts and discuss amongst themselves before asking them to share with the whole class their understanding of the charts and what information they can draw.

Students will be able to: Display the various charts as seen from real life examples from Newspapers, Adverts, Text books and Magazines

Pupils given opportunities to talk about charts /diagrams/graphs and their understanding of the charts.

Model the construction of each chart
Ensure pupils understand scaling of axis.
Pupils construct their own diagrams. Students will be able to: Review prior knowledge from SSSI on Mean, Median, Mode and Range from a list.
Also review Mean from Frequency Table .
compasses and
rulers
-secondary data

Plain paper
Newspapers
Magazines
Coloured Pencils

## Asking probing

## questions

How did you decide on how to organize your table of results?
What made your chart easy or difficult to construct?
Which chart[s] is mainly used to represent categorical data?

Pupils answer standard questions on constructing tables and drawing
frequency diagrams, Histograms, Frequency Polygons.

## Probing questions:

 -what difference[s] can you see between a frequency diagram and a histogram?-if you were to collect data to draw a histogram, what type of data would you collect? Give examples of such data.

What is important when choosing the scale of your graphs.

Students answer standard questions.

## -Estimating Mean

 from grouped data, -Identify modal class for grouped data and the class interval that contains the median.
## Tabulation and Representation

- Cumulative

Frequency curve from grouped discrete data

- Estimating Median
and Interquartile
range

Calculate an estimate of the Mean from grouped data.

Identify the Modal class interval and the class interval where in the median of the data lies.

Students will be able to: Teacher models completion of cumulative
frequency table and draw frequency table and draw a cumulative frequency curve.

Use the cumulative frequency curve to estimate Median, quartiles and Interquartile range.

Teacher models how to estimate Mean for grouped data, and show how this is almost grouped data, and show how this is almost
similar to calculating Mean from a Frequency table.
The concept of 'mid-point' should be carefully modelled and 'teased-out' from students by questioning and finally concluding that the mid-point is merely representing all the numbers within a class interval. Hence the Mean becomes only an estimate. Explain to students that by grouping the data, we have lost the frequency of the individual members of the class - interval.
We only have the total frequency of the class interval.
Teacher Models how to identify the Modal class interval and the interval where the Median lies. frequency table and drawing of Cumulative Frequency Curve.
Review - Tallying of data for Frequency table.
Use of the inequality sign when grouping data.

Teacher Models how to identiy the Modal

## Probing Questions

-Why is it only possible to estimate the Mean from grouped data?
-Why is the Mid-Point of the class interval used to calculate an estimated mean?
-Why not the end of the class interval? -write an essay on the steps you will take to estimate the Mean from grouped data.
-How could you possibly use a grouped frequency table to estimate the range and the median.

| Graph Papers | Students to answer |
| :--- | :--- |
| Teacher's | standard questions on |
| Handbook | Cumulative Frequency. |

Sudents to answer Cumulative Frequency

## Percentiles

## Graphs of Linear and Quadratic

 functionsStudents will be able to:
Estimate deciles and percentiles from Cumulative Frequency graphs.

Students will be able to: Recall prior knowledge on Linear graphs Example Equation of a straight line in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ with $m$ being the gradient and $c$ the intercept of the line on the $y$-axis.

Calculate gradient of line by drawing triangles or using two points on the line.

Gradient formula
$=$ change in $y$
Change in $x$
Show that when lines are parallel their gradients are the same.

Show that when lines are perpendicular the product of their gradient equals 1.

Find the distance between two points on a line.

Completed Cumulative Frequency diagrams
-Teacher
Handbook

Teacher Handbook Graph Paper Auto graph software

Students answer standard questions on deciles and percentiles.

Standard Questions on Linear graphs and their equations

## Probing Questions

State the gradient of the graphs with the equations

$$
\begin{aligned}
& Y=3 x+1 \\
& Y=7-2 x \\
& 2 x+3 y=6
\end{aligned}
$$

A linear graph has equation $y=m x+c$ If you increase the value of $M$, what changes would you expect to see on the graph?
If you make $m=0$ what changes will you see on the graph.

Without drawing, compare and contrast features of the following pairs of graphs.
[i] $y=3 x$ and $y=3 x+4$
[ii] $y=x+4$ and $y=x-2$
[iii] $y=3 x-2$ and $y=-3 x+4$
[iv] $3 x+4 y=12$ and $5 x+3 y$
$=15$

Find the midpoint of a line joining two points.

| Quadratic Graphs | Students will be able to: Fill table of Values, plot co-ordinates and draw graphs of quadratic functions. <br> Obtain roots of the function from the graph. [These roots to be linked to the values of $x$, if this function was to be solved algebraically] <br> Find the Co-ordinates of the maximum and minimum points on the graph. <br> Locate and state equation of line of symmetry of the curve. <br> Solve related equations using quadratic graphs. Determine the gradient at a point on the curve by drawing Tangents [and using Calculus] <br> Investigate the behaviour of the curve when the coefficient of $x^{2}$ changes from a positive Integer, through zero and to a negative Integer. | Teacher Modelling and investigative work. <br> Get students to investigate the behaviour of the curve when the coefficient of $x^{2}$ is changed from say 3 to 2 , to 1 , to 0 , to -1 , to 2 , and -3 . <br> This can be done using autograph or actually drawing on graph paper. <br> Get students to discuss their findings and draw conclusions. | Teacher Handbook Graph paper Autograph software | Students answer standard questions on Quadratic graphs including questions from past Examination Board papers. <br> Probing Questions <br> By inspecting a quadratic function, how can you tell it has got a maximum or minimum turning point? <br> How would you compare the gradient of a straight line and the gradient of a curve. |
| :---: | :---: | :---: | :---: | :---: |


| Manipulating Algebraic Fractions | Students will be able to: <br> Simplify algebraic fractions with monomial and binomial denominations. | Teacher Modelling Example: <br> Simplify <br> [i] $1 / a+1 / b$ <br> [ii] $1 / x+2+3 / x-2$ <br> [iii] $\frac{3 x^{2}+9 x}{x^{2}+4 x}+3$ <br> [iv] $\frac{x^{2}+3 x-4}{x^{2}+x-2}$ | Teacher Handbook | Students answer standard questions on algebraic fractions. |
| :---: | :---: | :---: | :---: | :---: |
| Linear Inequalities [Linear Programming] | Students will be able to: Explain Inequality and the signs associated with it. <br> Solve problems on Linear Inequalities and represent on a Number Line. <br> Draw and interpret graphs of inequalities and represent areas defined by inequalities by shading. <br> Solve simple quadratic inequalities in one unknown and represent the solution set on a number line. $\begin{aligned} & \text { E.g } x^{2} \leq 36 \\ & 4 x^{2}>25 \\ & x^{2}+3 x+2>0 \end{aligned}$ <br> Apply inequalities to simple real life situations [Linear programming] | Teacher Modelling <br> Explain to students that the techniques used in solving equations is the same used in solving Inequalities. <br> Model solving an equation like $3 x+2=10$ alongside and Inequality like $3 x+2>10$. <br> Model representation on a Number Line. <br> When shading areas to define inequalities, remind students to shade off the wrong area of each Inequality as they are drawn. <br> Model the use of Linear programming to solve real life situations like profit maximisation. <br> Example: A group of students hired the school hall that holds 200 people for their end of year concert. They priced their tickets at $\$ 2$ or $\$ 3$ each. <br> They agreed they will need to raise $\$ 450$ from this concert. They also decided that the number of $\$ 3$ tickets must not be greater than twice the number of $\$ 2$ tickets. If they sell $x$ tickets at $\$ 2$ each and $y$ tickets at $\$ 3$ each, calculate the maximum profit they could make. | Teacher Handbook Graph paper | Students to answer standard questions on Linear Inequality and Linear Programming. <br> Probing Questions <br> How did you go about finding the solution set for this Inequality? <br> What are the important conventions when representing the solution set on a Number Line? <br> Why does the inequality sign change when you multiply or divide the inequality by a negative number? <br> How many Inequalities do you need to describe a closed region? Convince me. |

How do you check if a

Teacher
Handbook
Multilink Cubes
Teacher
point lies:
-inside the region -outside the region -on the boundary of the region.
Students to answer standard questions on
Functions Functions
-

Students answer standard Question on A.P and G.P including those from past
which is a process that takes one number and turns it into [maps into] another number. We say x is mapped to $2 \mathrm{x}+5$.
Functions are often given names such as
$\mathrm{f}, \mathrm{g}, \mathrm{h}$, and so on. The rule for the above
function is written as:
$F(x)=2 x+5$ or
$F: x \rightarrow 2 x+5$ using arrows instead.
Explain:
-Domain and Co-domain
-Inverse function
-Composite functions

## Sequence and

Series
various types of relations Discuss relations and explain the relations. Many-to-many
One-to-many
Many-to-one
One-to-one
Relate functions to a number machine with Input and Output.

Input $\rightarrow$ multiply by $2 \rightarrow$ add $5 \rightarrow$ output For any input the instruction is to multiply that input by 2 first and then add 5 .
If the Input is $x$, then the output is $2 x+5$. This number machine is an example of a function,
Students will be able to: Teacher Modelling and explanations.
Distinguish between the

Use function notation to describe simple functions [Mappings]

Find the range of a function for a given domain.

Find the inverse of a given function.
Work with Composite functions

Students will be able to: Distinguish between a sequence and a series

Teacher Modelling
Explain sequence Explain series
and be familiar with the language and symbols of sequences

Identify sequences of odd numbers, even numbers, square numbers, cube numbers, Triangular numbers, Prime numbers and continue a sequence with more terms.

Recognise an Arithmetic Program and find its general term and sum of terms.

Recognise a geometric progression and find its general term and sum of terms.

## Matrices and determinants

## Students will be able to: <br> Explain a matrix and their

applications.

Identify the order of a matrix and the types of matrices.

Perform addition,
subtraction, scalar
multiplication and multiplication of matrices.

Explain the terminologies e.g. terms, difference, last term, number of terms, sum of term, first term, common ratio, sum of terms and their respective symbols.

Explain how to use the common difference [d] and first term [a] in an arithmetic sequence. Eg given $2^{\text {nd }}$ term is 7 and $5^{\text {th }}$ term is 19 , find a and d.

Model the use of nth term =a+(n-1)d
Model the use of Sum of terms

$$
\begin{aligned}
& =\frac{N}{2}(a+L) \text { where } L \text { is the last term. } \\
& =\frac{N}{2}(2 a+(N-1) d)
\end{aligned}
$$

Model use of general term and sum of G.P
Get pupils in groups and ask them to produce their own sequences from everyday objects.
Example: Matchsticks, multilink cubes,
Matchboxes, counters and present a formula for the general term of their sequence.

## Matchsticks <br> Counters

Matchboxes Teacher Modelling
-Explain matrices and their applications -Types of matrices eg Row Matrix, column matrix, null matrix, square matrix, diagonal matrix, unit or Identity matrix. -model addition, subtraction scalar multiplication and multiplication of matrices. -model the use of simultaneous equations to solve problems involving equality of matrices.

Teacher
Handbook
Examples of large data that can be stored in a form of a matrix.

Exam Board question papers.

## Probing Questions

[i] can you find a quick way of adding up the numbers from 1 to 10 to give 55 ? [without
calculator]
[ii] what about adding up
the numbers from 1 to 20.
[iii] what about adding the numbers from 1 to 100
[iv] what do you look for to decide whether a sequence is Linear or Quadratic?

Standard Question on Matrices

## Probing Questions

If the determinant of a matrix is zero, what does that tell you about the matrix.

What is the determinant of a singular matrix?

When a matrix is multiplied by its

Solve problems involving:
Transposition of Matrices;
Determinant of $a(2 \times 2)$
Matrix; Inverse of a (2x2)
matrix; Equality of
Matrices

## SHAPE, SPACE AND MEASURES

Angles, Lines and Triangles

## Polygons and <br> Congruency

## Students to be able to:

Distinguish between acute obtuse reflex

Draw and measure angles and right angles.

Use angles related to intersecting lines and parallel lines.

Show the exterior angle of a triangle property and the sum angle of a triangle property.

Explain the terms 'Isosceles', equilateral 'Scalene' and right angled triangles' and their related properties.
Students will be able to:

## Year 2/Term 3

Recognise and give the names of polygons.

Explain the angle sum of a quadrilateral, name all quadrilaterals and state their properties.
determinant, the result is the Unit of Matrix
True or False? Convince me.

Teacher
Handbook
Protractors

Students answer standard questions on angles and parallel lines.

Students to draw their angles and measure using protractor as students to also draw given angles.

## Teacher

 HandbookStudents to answer standard questions

## Probing Questions

Describe a rectangle precisely in words so that someone else can draw it.

Identify a regular polygon and calculate interior and exterior angles of regular polygons.
Derive the sum of angels of a polygon, of $n$ sides as ( $\mathrm{N}-2$ ) 180 .

Use formula Exterior angle $=\underline{360}$

No of sides
Explain the meaning of congruent shapes

| No of sides | Name | Triangles | Sum of angles |
| :---: | :---: | :---: | :---: |
| 3 | Triangle Quadrilateral Pentagon | 123 | $\begin{aligned} & 180 \\ & 2 x \\ & 180=360^{\circ} \\ & 3 \times 180=540^{\circ} \end{aligned}$ |
| 4 |  |  |  |
| 5 |  |  |  |
| 6 |  |  |  |
| 7 |  |  |  |
| 8 |  |  |  |
| N |  |  |  |

Students to look for connection between the Number of sides and the possible number of triangles in the shape and if 1 triangle has $180^{\circ}$, then for any number of triangles, find the sum by multiplying by $180^{\circ}$

What mathematical words are important when describing a rectangle?
what properties do you need to be sure a triangle is Isosceles, or equilateral or scalene?
which of the following statements are true? -any two right angle triangles will be similar -All circles are similar -if you enlarge a shape you get two similar shapes.

Which quadrilateral has only 1 line of symmetry True or false? Explain

A square is a rectangle but a rectangle is not a square.
Some trapezia may not have a line of symmetry.
A rhombus is a
parallelogram but a parallelogram is not a rhombus.
Which quadrilateral can have 3 acute angles? Which triangle is a regular polygon?
Which Quadrilateral is a
regular polygon?

## Lines of Symmetry, Rotational Symmetry

Construction

LOCI

Students will be able to:
Identify lines of symmetry and the order of rotational symmetry of a 2D figure

Teacher Modelling:
Rotational symmetry is when a shape can
rotate and fits into itself as it is rotated.
The number of times it will fit into itself before reaching its original position is called the order.
Students will be able to: Teacher Modelling
-Model the whole of construction to include angles $75^{\circ}, 105^{\circ}$, and $135^{\circ}$
Construct angles
bisectors and bisectors of line segment.

Construct a perpendicular from a point to a line.

Construct a perpendicular from a point on a line.

Construct a line parallel
to another line.
Construct angles $90^{\circ}, 60^{\circ}$, $45^{\circ}$ and $30^{\circ}$

Construct triangles and quadrilateral based on given information.

Teacher Modelling
Make connection between Loci and Construction.

Car wheel covers Car 'badges'
Teacher
Handbook
Compasses and

## Compass

Pencils

Students to answer standard Questions

Students to answer standard questions on construction including from past Exam Board Questions.

## Probing Questions

How does knowledge of properties of a rhombus help with simple constructions like bisecting an angle?

For which constructions is it important to keep the same compass arc? Why?

The following are given as lengths of triangles which ones can never be triangles?
Explain:
[i] $5 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$
[ii] $8 \mathrm{~cm}, 4 \mathrm{~cm}, 13 \mathrm{~cm}$
[iii] $9 \mathrm{~cm}, 6 \mathrm{~cm}, 15 \mathrm{~cm}$
[iv] $7 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$
[v] $12 \mathrm{~cm}, 8 \mathrm{~cm}, 3 \mathrm{~cm}$
Students to answer standard questions on Loci

Construct points at a given distance from a given point [a circle]

Construct points
equidistant from 2 given
points [bisector of a line]
Construct points equidistant from 2 given
lines [Angle bisector]
Construct points at a given distance from a given line [Line parallel to another line]

Apply Loci to real life situations.
CIRCLES

Example: A perpendicular bisector of a line $A B$ is the Loci of points equivalent from $A$ and $B$

Students will be able to: Teacher modelling
Identify parts of a circle.
Eg centre, radius,
diameter, circumference, tangent, arc, sector, segment, chord segment,

Calculate Area and
Circumference of a circle, including Compound shapes and semi circles.

Investigate the relationship between the Circumference and diameter for various circles and obtain a Value for 'pi'.

Calculating area and circumference of circles, including Compound Shapes. Investigative approach to obtain value for Pi . Get students to measure the circumference and diameter of various round object or circles of different sizes and record results in table.

| Circumference | Diameter | Circumference <br> -Diameter |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |

## Teacher

 Handbook Various round objects, circles. Measuring instruments e.g. Calipers, ruler, tape measures Strings, threadStudents answer standard questions on Circles.

## Probing Questions

State one similarity and difference between a chord and a diameter.

Students to divide the circumference by the diameter. What conclusions can they draw.
This value is an estimate of the Constant Pi.

## Mensuration of 2D

 shapes
## 3D Shapes and

## Volume

Teacher Modelling
-converting $\mathrm{cm}^{2}$ to $\mathrm{m}^{2}$ and vice versa.
Opportunities for practical activities to be exploited.
Example: students expected to measure and calculate areas and perimeter of accessible areas in the school environment eg doors, tables, surfaces, school playground.
dentification of shapes from the local environment. Eg paper currencies are rectangles.

Clarify the misconception of base and height of a triangle by explanation and diagrams.

Distinguish between Metric and Imperial units

## Students to be able to:

 Recognise and name 3D solidsCorrectly use the terms 'face' 'edge" and 'vertex'

Teacher
Handbook
Measuring
Instruments
Trundle wheel
Measuring tapes

Students answer standard questions.

Discussing with students during practical activities.

## Probing Questions

Yeabu said there can only be one triangle with an area of $12 \mathrm{~cm}^{2}$ Tommy disagrees. Explain why Tommy is right.

The base and height of a triangle are always at $90^{\circ}$ to each other. State whether this statement is Always, sometimes or never true.

Is the following statement always, sometimes or never true?

If a rectangle has a larger perimeter than another one, then it will also have a larger area.
Standard questions on 3D shapes and volumes.

## Building Young Futures

MBSSE's Senior Secondary School Curriculum
in the context of 3D solids.

Distinguish between Prism and non Prisms [ie Prisms have a uniform cross-sectional area al along its length]

Find the volume of Prisms and non-Prisms like Cone, Pyramid and compound shapes.

Explain total surface area and calculate total surface area of 3D shapes

Convert between units of volume within the metric system ie $\mathrm{cm}^{3}$ to $\mathrm{m}^{3}$ and vice versa. I Litre = $1000 \mathrm{~cm}^{3}$

## Pythagoras theorem Students to be able to:

Trigonometry in right angle and non-right-angle triangle

Calculate in right angled triangles using
Pythagoras
Use the trigonometric ratios to calculate lengths and angles in right angle triangles.
Use sine and cosine rules to calculate lengths, distances and angles in non-right-angle triangles.

Teacher Modelling
Recap Pythagoras theorem.
Do initial work on labelling of sides of right angle triangle with given angle.

Students must be able to identify opposite adjacent and hypotenuse before moving on to main task.

## Teacher <br> Handbook

Standard questions on Pythagoras and Trigonometry

## Probing Questions

How do you decide whether a problem requires use of a trigonometric relationship [sine, cosine or tangent] or Pythagoras theorem to solve it?

Why is it important to understand similar triangles when using trigonometric relationships?
$A B C D$ is a square and $X$ is a midpoint on $A B$.
Calculate angle AXD

## Logarithm <br> [Exclude use of logarithm tables]

LOGICAL REASONING

## Students be able to:

Relate indices to
logarithm
Apply the laws of logarithm to solve problems.

Apply the proportions of logarithm to solve problems.

Solve equations involving logarithms

## Students to be able to:

Identify true or false statements.

Form true or false statements.

Determine validity of an argument.

## Year 3/Term 1

Teacher Modelling
Model logarithm including its relation to indices, the laws of logarithm and the properties of logarithm.

Teacher Modelling
Explain symbols used in logical reasoning.

## Teacher

 HandbookStudents to answer standard questions on Logarithm including those from Exam Board past papers.

Students answer standard questions in Logical Reasoning and from Exam Board past papers.

| Variance and Standard Deviation | Students will be avble to: Describe Variance as a measure of spread that uses all the data, unlike the interquartile range that uses two values, the upper and lower quartile. <br> Describe the square root of the variance is called standard deviation. <br> Calculate variance and standard Deviation by use of formulae including standard deviation formulae for frequency distributions and grouped frequency distribution. | Teacher modelling: <br> Model use of formulae to calculate variance and standard deviation. | Teacher Handbook and Formulae | Standard questions on Variance and Standard deviation. <br> Probing Questions <br> You are given several data sets. Some with outliers and some without outliers. If you are to measure spread, explain which ones will you apply the Interquartile range to and which ones you will apply the variance to. |
| :---: | :---: | :---: | :---: | :---: |
| Angles of Elevation and depression | Students will be able to: Calculate angles of elevation and depression and other related heights and distances. | Teacher Modelling: <br> -a practical approach is recommended for this lesson. <br> -students can work outdoors using clinometers or improvised clinometers using protractors and paper tubes. | Clinometer Improvised Clinometers | Students to answer standard questions on angles of elevation and depression. |
| Bearings | Students will be able to: Explain the concept and language of bearings. <br> Represent practical situations using sketches <br> Calculate bearings and related distances. | Initial practical approach is recommended. Students work outside and model bearings using Map compasses | Map Compasses <br> Measuring <br> Instruments <br> Eg Trundle wheel <br> Tape Measures | Students answer standard question on bearings. |

Circle Theorems

## CALCULUS

Differentiation

## Students will be able to:

 Use the circle theorems and do calculations involving circle theorems with reasons
## Students will be able to:

Explain the concept of a
variable rate of change.
Differentiate Integer powers of $x$.

Determine gradient stationary points, turning points [maxima and minima] by differentiation and relate to calculating gradient of curve at a given point.

Area of Sectors and length of arc

Students to be able to: Calculate area of sector and length of arc by use of formulae

Teacher Modelling
Model the circle theorems involving

1. Angles at the centre and at the circumference
2. Angles in the same segment
3. Angles in a semi-circle
4. Angles in the alternate segment
5. Cyclic Quadrilateral
6. Tangents to a circle

Mention angle between radius and tangent at point of contact is a right angle.

Do calculations involving length of chords and distances of chords from centre of circle.

Teacher Modelling
When modelling gradient of a curve at a point, first get students to estimate gradient of curve at the stated point by drawing a tangent at that point and then find the gradient of the Tangent.

Include finding co-ordinates of turning points.

Teacher Handbook

Students to answer standard questions on circle theorems.

## Probing Questions

Write answers for a series of questions on circle theorems that have wrong calculations, using wrong theorems with poor, unclear and incomplete reasons. Their task is to rewrite the answers with correct calculations supported by correct theorems and with clear, complete reasons.
Standard questions on differentiation.

Probing Questions
Why When Finding
The gradient of a curve at a point, drawing a tangent is not a good method?

## Year 3/Term 2

Teacher Modelling
Use circular filter paper to cut out sector for demonstration purpose

Teacher
Handbook

Teacher Handbook Circular filter paper

Calculate area of segment using area of triangle $=1 / 2 a b \operatorname{Sin} C$

Explain that when a sector in folded, it forms a cone and appreciate the relationship between

- the area of the sector and the curved surface area of the cone.
- the radius of the arc and the slant edge of the cone.

Explain the relationship between the length of the arc and the circumference of the base circle of the cone which it makes when folded.
Students to understand that shapes are similar when one is an enlargement of the other and that corresponding sides and angles are all in the same ratio.

Students to be able to work out ratio of corresponding sides to work out scale factor.

Model questions on calculating area of segment.

Area of segment = Area of sector - Area of Triangle

## Teacher Modelling

Model the relationships

1. Small length $x$ Scale Factor $=$ Large length
2. Small Area $x(\text { Scale Factor })^{2}=$ Large Area
Small Volume $\times(\text { Scale factor })^{3}=$ Large Volume

Teacher Handbook

Students answer standard questions on Similarity.

## Probing Questions

What is frustum? Give me five examples of Frustum you will see in your local environment.

Students to be able to calculate length, area and volume of similar figures

Students to be able to use similarity to calculate volume of frustum.
Students to be able to:
[i] reflect 2D shapes on graph paper given the equation of the line of reflection.
[ii] rotate a shape on graph paper giving the centre of rotation and the angle and direction of rotation.
[iii]Translate a shape on graph paper given the Vector Translation.
[iv] Enlarge a shape given the centre of rotation and the scale factor.
[v] students to be able to describe transformation.

Teacher Modelling
Model reflection along the $x$-axis the $y$-axis $x=2$, axis and $y=x$ axis etc. Point out to students that the image and object will have the same distance from the line of reflection. Mirrors could be used to support understanding. When reflecting along a diagonal line $[y=x$ or $y=-x]$, point out that you count the number of steps needed to get to the line from any point using the scale on the $y$-axis and when you reach the line you bend away from the line and count the same number of steps from the line to locate your point. Each point is done one at a time.

When modelling notation explain what is clockwise rotation and use tracing paper to rotate the shape accordingly around the centre of rotation.

When modelling transformation explain the column vector Notation. [ ${ }^{x}$ y $]$
E.g when asked to translate a shape by vectors [ ${ }_{2}$ ]
It means move the shape 3 steps to the right along the $x$-axis and then 2 steps upwards along the $y$-axis.

Teacher Handbook Graph Paper Mirrors Tracing paper

Standard Questions on Transformation

## Probing Questions

When describing a reflection what are the key elements that must be specified?

When describing a rotation what are the key elements that must be specified?

When describing a translation, what key elements must be specified?

When describing enlargement, what key elements must be specified?

A reflection in one axis followed by a reflection in the other axis is the same as a rotation.

Decide whether this statement is sometimes, always or never true.

When a shape is enlarged with a scale factor 3 , what happens to its area?

| Teacher <br> Handbook <br> Graph paper | Standard questions on <br> trigonometric graphs. |
| :--- | :--- |
|  | Probing Questions <br> Why does the graphs of y <br> $=$ SinX start at 0 within the <br> range of $0^{\circ}$ and $360^{\circ}$. |
|  | Why does the graph $\mathrm{y}=$ <br> Cosx start at ii within the <br> range of $0^{\circ}$ and $360^{\circ}$ |
| Teacher | Standard Questions on <br> trigonometric ratios <br> Handbook <br> including from Exam |
| board past papers. |  |

Distinguish between
scalar and vector quantities.

Explain vector notation and representation.

Explain that the negative or inverse of a vector.

Add, subtract vectors and multiply vectors by a scalar.

Calculate with position vectors.

Identify parallel and perpendicular vectors.

## Probability

-Understand the term
'Probability'
-Language of probability
-Probability scale -Probability of events happening

Students will be

Use simple language of probability [certain, impossible, likely, unlikely, even chance, impossible, outcomes, equally likely]

Use probability scale.
Calculate probability of events happening.

Draw a sample space diagram for given events.

Determine the probability
of an event occurring
questions from past exam board papers.

## Coins <br> Counter

Give me three situations where probability is used in everyday life.

Write down or explain two situations where you used probability to make a decision in real-life situation this week.

Can you give me an example of what is meant by 'equally likely outcomes'?

The Probability of getting a ' 3 ' when a die is thrown is $1 / 6$. Can you explain why?
from a sample space diagram.

## Probability

## Theoretical

Probability
Experimental
probability/Relative
frequency
Mutually exclusive
events
Expected frequencies

Students will be able to: Explain the difference between Theoretical probability and Experimental Probability / relative frequency

Explain the term 'mutually exclusive' and can find the probability of Mutually exclusive events

Use the fact that the sum of all mutually exclusive outcomes of an event is

Use the addition rule of Probability for mutually exclusive events,

When a coin is tossed, the probability of getting tails is $1 / 2$. Can you explain why?

Give me examples of probabilities for events that could be described using the following words: -Impossible
-Certain
-Unlikely
-Even chance
Show these on a
Probability Scale.
Students answer standard questions with confidence. Probing Questions
-a match box is to be used as a die. The two largest faces are each marked with 1 and with 6 . The next two largest faces are marked with 2 and with 5 and the two smallest faces are each marked with 3 and with 4.
What two faces will have the largest probability of facing up when the matchbox is thrown as a die? Explain why.
-Explain how you would estimate the Probability of obtaining a ' 3 ' when the

Calculate expected frequency

## Probability

-Independent events and tree diagrams

## Students will be able to:

Calculate probabilities of repeated events.

Draw and use Probability tree diagram

Use correctly the term "independent events"

Use the multiplication rule
for probability
$P[A$ and $B]=P[A] X$
$\mathrm{P}[\mathrm{B}]$

Teacher Modelling:
Explain to students that Independent events are events in which the probability of one event occurring does not affect the probability of the other event occurring . Example: getting Heads, when a coin is flipped and obtaining an even number when a die is rolled.
Model the construction of a tree diagram for: A box has 4 blue and 6 black yellow counters.
A counter is picked at random, the colour noted and then replaced. This is done a second time.
List out all possible 4 outcomes
le: Blue and Blue
Blue and yellow
Yellow and blue
Yellow and yellow
And explain to students that use of a tree diagram will make them avoid missing any combination.

Model the multiplication rule for probability of independent events and apply to standard questions on Probability.

Emphasise the language of probability when answering questions. E.g. 'both', 'either',
matchbox is thrown as a die.
-Design an experiment you will carry out to estimate the probability that the first car that goes past the school entrance after 8am is a green car.

Teacher Handbook Counters

Students answer standard questions on Probability tree diagrams.

## Probing Questions

-In a city, 80 people with Coronavirus symptons were tested for the virus using a new trial kit.
19 people tested positive.
The virus only developed
in 11 people who tested positive. A total of 67 people did not develop the virus at all.
Using a tree diagram what is the probability that a person will develop the virus.
Give me an example of: -a problem which could be solved by adding
Probabilities'
-a problem which could be solved by multiplying Probabilities.
'neither', 'with replacement', 'without replacement', 'at least', 'at most'.

Also incorporate the Addition rule for probability when modelling solutions on probability.

## Students to:

Decide if two events are independent.
Draw and use tree diagrams to calculate conditional probability

## Teacher Modelling:

-explain conditional probability as the probability of a dependent event. The probability of the second outcome depends on what has already happened in the first outcome.
-Model Tree Diagrams from standard
Questions and answer standard questions

What are the key features of mutually exclusive and independent events on the tree diagram?

Why do the Probabilities on each set of branches have to sum up to 1?

How can you tell from a completed tree diagram whether the question specified 'with' or 'without' replacement?

What strategies do you use to check that
Probabilities on your tree diagram are correct?

Explain to me the steps you took to draw this tree diagram and how to use it to find the probability of this event.

Teacher Handbook

Student answer standard questions on conditional probability.

## Resources

## Measuring tapes

Metre sticks
Trundle wheels to measure long distances
Masses (1kg, 2kg etc)
Stop watches
Vanguards
Permanent markers (different colours)
Classroom displays
Class sets of rulers, protractors, compasses and pencils
Glue sticks
Sets of Geometrical models (3-D shapes)
Blue tac (to support classroom displays/charts)
Board Rulers, Protractors and compasses.
Interactive whiteboards
Playing cards
Spinners (for probability)
Tape Measures
Meter Rule
Height Measures
Weights
Callipers
2D Shape sets
Assorted coloured Dice
Vanguard Coloured Cards
Scale
3D Translucent Shapes
Strings and Threads
Multilink Cubes
Centimetre Squared Paper
Dotted Isometric Paper
Tracing paper
Clinometer [improvised clinometers]
Graph paper
Autograph software

Newspapers/magazines/leaflets
Mathematical instruments [compasses, rulers etc]
Car wheel covers
Car "badges"
Circular filter paper
Internet [Secondary data research]
Mirrors
Coins
Matchboxes
Matchsticks
Counters

