The New Senior Secondary Curriculum for Sierra Leone

Subject syllabus for Mathematics for Business and Enterprise Subject stream: Mathematics and Numeracy

This subject syllabus is based on the National Curriculum Framework for Senior Secondary Education. It was prepared by national curriculum specialists and subject experts.

Curriculum elements for Mathematics for Business and Enterprise – an applied subject

Rationale for the Business mathematics in the Senior Secondary School Curriculum

In the business world, everyone—employees and managers alike—needs knowledge of and skill in business mathematics. While computers and calculators are used for many calculations, it is important to understand the concepts behind mechanical computations. The purpose of this business mathematics subject is to increase your math knowledge and skill as it applies to many aspects of business and to help make you a more valuable player in the business arena.

Business mathematics provides a solid preparation and foundation for pursuing courses and careers in accounting, marketing, retailing, banking, finance and business administration. It will provide the student skills in using specific business mathematics applications. It also teaches the mathematical skills required for problem solving and decision making in the business world through the use of mathematical models and specialized techniques. Topics include functions as mathematical models, equation-solving techniques, differential and integral calculus, exponential growth and time-value of money, partial derivatives and their applications in economic functions, and simple matrix algebra.

General Learning Outcomes

At the end of the three years, students will be able to:

- Demonstrate understanding of the concepts from the branches of mathematics.
- Use appropriate mathematical concepts and skills to solve problems in both familiar and unfamiliar situations including those in real-life contexts.
- Understand how to process and interpret information to arrive at logical conclusions to common business math applications.
- Develop proficiency in the application to solve business math problems and the important role math plays in all facets of the business world.

Structure of the Syllabus over the 3-Year Senior Secondary Cycle

	SSS 1	SSS 2	SSS 3
Term 1	Sets Describe set and the various types. Apply the algebra of sets. Solve two and three set problems (including use of Venn diagrams Indices	 Sequences and Series Finite and Infinite sequences Recurrence sequence Arithmetic sequence and Geometric sequence 	Matrices Operations on matrices Finding the determinant and inverse of a matrix (limited to 2 x 2 matrices) Application of matrices (Cramer's rule) to solve simultaneous linear equations in two variables

	Rules of indices	Finite and infinite series	
	 Combination of two rules of indices 	 Arithmetic series and Geometric series 	
	Equation of indices	 Sum of Arithmetic sequences and Geometric sequences 	
	Number Base and Modular		
	Arithmetic	Mathematics of finance 1	
	Express based ten numbers to	Ratio	
	any other based number.	Rate	
	Express any other based	Profit and loss	
	number to a ten number.	percentage change	
	Operations on number base	(increase/decrease)	
	Number base leading to simple	Bills and Tariffs	
	line equation	Taxation and Wages	
	Operation on modulo (limited to		
	5 elements in the set)		
Term 2	Basic algebras	Mathematics of finance 11	Statistics 1
	Algebra and real numbers	Simple interest	Data types and data collection procedure
	Operations on polynomials	Compound interest	Data Representation
	Factoring polynomials	Future value of an annuity	
	 Linear equations and 	(Sinking fund)	Data Analysis:
	inequalities in one variable	Present value of an annuity	(Measure of Central Tendency and
		(amortization)	Dispersion for both Ungrouped and
	Relations and Functions		Grouped Data)
	 Relations, Mappings and 	Linear inequalities and linear	Statistics 11
	Functions	programing	Correlation (types and coefficient by
	• Function Notation.	Systems of linear inequalities in	spearman's ranking method only)
	Types of functions	two variables	spearman's ranking method emy
	Representing functions.	Linear programming in two	Regression (least square method only for
	Inverse Functions and	variables	prediction equation).
	Composite Functions	 Business application of linear programming 	, , , , , , , , , , , , , , , , , , , ,
	Graphs and roots of Functions	programming	
		Introduction to simplex method	

			Introduction to time series and price index
Term 3	Polynomial Functions	Calculus	Probability
	General Characteristics	Differentiation	Permutation and Combination
	Linear function	Applications of Differentiation	Introductory to probability concepts
	Quadratic Function	Integration	Probability events
	Exponential function	Applications of Integration	Bayes' formula
	Logarithmic Function		Normal distribution

Detailed teaching syllabus outline

Topic/Theme/Unit	Expected learning	Recommended teaching	Suggested	Assessment of learning
	outcomes	methods	resources	outcomes
		YEAR 1 FIRST TERM		
Sets Understanding and applying the algebra of sets. Solving two- and three- set problems	Students will be able to: Describe set and the various types. Apply the algebra of sets. Solve two and three set problems (including use of Venn diagrams)	Introduce set as very important concept in mathematics in everyday life collection. Discuss with the students the definition of set as a well-defined collection of objects of the same kind. Explain the various types of sets Universal set, empty set, subset. Teacher to Describe <i>set notation,</i> <i>members/elements by</i> • Listing its members T = (2,3,4,5,7,11) • Given word description of its members A = (prime numbers less than 12). • Using a set-builder notation B = (x: 1 < x < 12)	Diagram of various set type on vanguard Illustrated Venn diagram on vanguard	Ask student short answer questions. E.g. Name any 3 types of set. Write two sets and ask students to illustrate union, intersect and complement of set. Write a three sets word problem on the board and asked the students to calculate i). One only ii) Both iii). All the three

			Explain the various types of sets	
			Teacher to explain the illustrated	
			Venn diagram on the vanguard	
			Discuss operation of sets	
			U : Union	
			∩ : Intersection	
			: Complement disjoint sets	
			Solve two and three set problems	
ł	lu dia a	Otudanta will be able to	(including use of Venn diagrams)	Organiza students in
	Rules of indices	Students will be able to:	Explain the meaning of indices (as the plural of an index). Try give	pairs/groups and give the
		State the rules of indices	synonyms to index. E.g., Exponent,	tasks to solve. Move round
	Combination of two rules	and solve problems	power etc.	helping struggling students.
	or indices	Solve problems on	State each rule/law with cited	Example:
	Equation of indices	exponential equations	examples.	Simplify $125^{-4} \div 25^{3}$
		using the laws of indices	Example: $a^m \times a^n = a^{m+n}$.	Column the equation $\Omega^{2} r^{-3}$
			Solve problems related to	Solve the equation 8 =
			exponential equations	0.5
ł	Number Pase and	Studente will be able to:	Ask the students to sount in some	
	Modular Arithmetic	Students will be able to.	of our local dialects like mende.	for them to try'
	Express based ten	Explain and define number	themne or limba. Relate that to	Example:
	numbers to any other	base and modular	number base that some count in	Convert 522_{seven} to a
	based number.	anumeuc	case maybe.	number in base two.
	Express any other based	Convert between bases		If the numbers are in base
	number to a ten number.	Solve simple equations on	Solve some problems on	three solve the equation $121x \pm 11 = 1100$
	Operations on number	number base	base ₃ to base ₄	1217 7 11 - 1100
	base	B <i>W</i>		Simplify 4×3 in <i>mod</i> 5
	Number base leading to	Difference between number	Use the clock to introduce modular	Eind(2, 4)modE
	simple line equation	arithmetic	normal time).	Find (3 - 4) mous

Operation on modulo (limited to 5 elements in the set)	Solve problems on modular arithmetic	Solve simple problems on modular arithmetic.		
		YEAR 1 SECOND TERM		
 Basic algebras Algebra and real numbers Operations on polynomials Factoring polynomials Linear equations and inequalities in one variable 	 Students will be able to: Explain basic terminologies like variable, coefficient etc. Use the properties of the real number system to algebra Simplify algebraic expressions Factorize a trinomial Solve simple problems on linear equations in one variable and two variables (simultaneous equations) Solve inequality problems. 	Explain and discuss the various terminologies with cited examples (E.g. Numerical and literal coefficients, variables etc.) Solve problems using the associative or distributive rules of real numbers Solve problems of factorization and simultaneous linear equations not more than two variables.		Ask students explain certain terms in algebra. Organize students in groups/pairs and give exercises to try in class Example: Expand and simplify $\{2(x + 3) - 4(2x - 3y) + 1\}$ - 3x - 2y factorize $x^2 - 8x - 20$ solve the equation $\frac{2(z-1)}{3} - \frac{3(2z+3)}{4} = \frac{2}{12}$
Relations and Functions Describing Relations, Mappings and Functions Using Function Notation. Specifying the different	Students will be able to: Describe Relations, Mappings and Functions Apply Function Notation, (domain, range, dependent and independent variables)	Introduce the concept of relation as an association that exits between two sets of objects the domain and co- domain. Further explain that relation can be shown by means of order pairs Discuss with the students that the	Illustrated cases of relation, mapping and functions on vanguard Graph board Graph paper	Ask students to draw the various types of functions $ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} $
types of functions Representing functions.	Identify the different types of functions (one to one, one - many & many to one	set of all possible images of the domain is called range.	Blackboard ruler Foot rule	E.g. Find the images of the elements of the domain [-2,-

Inverse Functions and Composite Functions Graphs and roots of Functions	etc.) Represent functions using tables, algebraically and graphically Evaluate Inverse and Composite Functions and determine the roots of functions	Note. A relation may exist between two sets but not all the elements of the domain may be associated with elements of the co-domain. Types of relation: One –to-one, many- to- one, many –to- many. Describe Mapping as a relation in which each member in the domain maps onto only one member in the co-domain I.e. one to one and many to one relation are mappings. Discuss with the students how to identify functions from these characteristics. a). Each element in A must be matched with an element in B b). Some elements in B may not be matched with the same element in B d). An element in A cannot be matched with two different elements in B. Discuss with the students the domain and range of the given function. Illustrate Graphs of functions using the graph board. If f is a function with domain D, then the graph of 'f' is the set of all points P(x, f(x)) in the plane. That is the graph of 'f' is the graph of y = f(x).	Markers Colored chalks Pencils Diagram of the various types of functions • One to one • One to many • Many to one Showing the Domain and the image (Range)	1 0, 1, 2] define by the function $f: x \rightarrow \frac{3x-1}{x-3}$ E.g. Draw the graph of the function $f(x) = 2x + 1$ in the interval $-2 \le x \le 4$ Inverse Function Given the function i). $f(x) = 3x - 2$, find its inverse. ii). Given $f(x) = 2x + 3$, find $f^{-1}(x)$. iii). Find the inverse of the following function g(x) = (x + 4)/(2x - 5) Composite Function i). Given the functions $f(x) = x^2 + 6$ and $g(x) =$ $2x - 1$, find ($f \circ g$) (x). ii). Given the functions g(x) = 2x - 1 and $f(x)= x^2 + 6, find (g \circ f) (x).iii). Find (g \circ f) (x) given that,f(x) = 2x + 3 and g(x) = -x^2 + 5$

		Solve problems with the students involving function of a function i.e. $(fog)(x) = f(g(x))$ and inverse function Restrict to simple algebraic functions only. Draw Graphs of Functions and determine the Roots of Functions using the graph board		
		YEAR 1 THIRD TERM		
Polynomial Functions 1 General Characteristics of functions	Students will be able to: Recognise equations of polynomial functions of degree ≤ 4 Simplify the algebra of polynomial functions State and apply the Remainder theorem and the Factor theorem	Write the remainder and factor theorem and demonstrate how to apply them in simplifying polynomial Remainder Theorem if a polynomial $f(x)$ is divided by x - k, the remainder is r = f(k) E.g. Use the remainder theorem to evaluate the function at $x = -2$ $f(x) = 3x^3 + 8x^2 + 5x - 7$ Factor Theorem A polynomial $f(x)$ has a factor $(x - k)$ if and only if $f(k) = 0$ E.g. Show that $(x - 2)$ and $(x + 3)$ are factors of $f(x) = 2x^4 + 7x^3 - 4x^2 - 27x - 18$	Textbooks Chart showing polynomial functions of degree ≤ 4 a). Linear function b). Quadratic function c). Cubic function	i). The remainder after $2x^2-5x-1$ is divided by x-3 ii). the remainder after $2x^2-5x-1$ is divided by x-5 iii). Use the Factor Theorem to find the zeros of $f(x) =$ $x^3 + 4x^2 - 4x - 16$ given that (x-2) is a factor of a polynomial. iv. use the factor theorem to find the zeros of $f(x) = x^3 -$ $6x^2 - x + 30$. Given that (x+2) is a factor of a polynomial.
Polynomial Functions 11 Linear Functions	Students will be able to: Identify linear function represented by a straight-line graph Sketch graphs of linear equations	Discuss linear function as a graph $f(x) = ax + b$ is a line with slope $m = a$ and y- intercept at $(0, b)$. Use the graph board, Blackboard ruler, colored chalks and allow students to work on graph paper to demonstrate how to sketch linear graph	Graph board Graph paper Blackboard ruler Foot rule Markers Colored chalks Pencils	Plot the points and find the slope of the lie that passes through the pair of points i). $(-3, -)$ and $(1,6)$ ii). $(2,4)$ and $(4, -4)$ Use the point on the line and the slope of the line to

	Derive equations of linear equations using slope- intercept, slope point, two points Find equations of parallel and perpendicular lines to a given line Solve simultaneous linear equations graphically or algebraically	Help the students Derive equations of linear equations using a) slope-intercept $m = \frac{y_2 - y_1}{x_2 - x_1}$ b) point - slope $y - y_1 = m(x - x_1)$ c) two points D(x, y) and $R(x, y)For Parallel lines the gradientsare equal i.e., m_1 = m_2For Perpendicular lines, theproduct of their gradients isminus one i.e.m_1m_2 = -1Where m_1 and m_2 are gradients ofthe two lines?Teacher Use the graph board,Blackboard ruler, Colored chalksand allow students to work ongraph paper to demonstrate how tosketch simultaneous linearequations graphically andalgebraically (including methods ofelimination and substitution$	determine the general equation of the line. 1. Point (2,1) and slope m =1 2. Point (-5,4) and slope m =2 Determine whether the lines L ₁ and L ₂ are parallel or perpendicular i). L ₁ (0,-1),(5,9) L ₂ (0,3), (4,1) .L ₁ (3,6),(-6,0) L ₂ (0,-1), (5, $\frac{7}{3}$) Simultaneous Linear Solve the following pair of simultaneous linear equations: 2x + 3y = 8 3x + 2y = 7 Using elimination, substitution and graphical methods.
Quadratic Functions	Students will be able to: Recognise quadratic functions represented by a parabola Sketch graphs of quadratic functions using turning	Teacher to define quadratic function. Let a, b, and c be real numbers with $a \neq 0$. The function $f(x) = ax^2 + bx + c$ Use the graph board, blackboard ruler to illustrate quadratic graph	Solve the quadratic equation by completing the square $x^{2} + 4x + 1 = 0$ Solve the quadratic equation by formula method

	points, intercepts and axis of symmetry	turning points, intercepts, and axis of symmetry.		$-4x^2 + x + 3 = 0.$
	Determine the nature of the roots of a quadratic equation Use the discriminant Solve quadratic equations by the graphical method, factorizing method, completing the square and Quadratic formula Derive quadratic equations given sufficient information Solve simultaneous equations for one linear, one quadratic	Solve problem on quadratic equation by a) Graphical method b) Factorizing method c) Completing the square d) Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Demonstrate the Roots of quadratic equations – equal roots (b ² - 4ac = 0), real and unequal roots (b ² - 4ac > 0), imaginary roots (b ² - 4ac < 0); sum and product of roots of a quadratic equation e.g., if the roots of the equation $3x^2$ + $5x + 2 = 0$ are α and β , form the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\alpha}$.		Solve the quadratic equation by graphical method. $-4x^2 + x + 3 = 0.$
Polynomial Functions III Rational Functions	Students will be able to: Recognize rational function	Teacher to explain to the students that rational function can be written in the form	Charts of laws of indices	1). If $f: x \to \frac{1}{2+x}$, find the range if the domain is the set $[x: 1 \le x \le 5]$
	as a quotient of two	$f(x) = \frac{N(x)}{x}$	Chart of laws of	$[x, 1 \leq x \leq 5]$
Exponential and	polynomial functions	$f(x) = \frac{1}{D(x)}$	logarithms	2). Simplify the following
Logarithmic Functions	Apply the four exercises	Where N(x) and D(x) are	Graph board	rational functions
	on rational functions	polynomials and $D(x)$ is not zero.	Graph board	4
		Solve problems as work examples	Graph paper	$\frac{1}{3} + \frac{3}{3}$
	Students will be able to:	with the students involving rational		x-2 $x+1$
		functions	Blackboard ruler	4 3
	Decompose rational	E.g. Find the domain of the function	Foot rulo	$\overline{x+2} - \overline{x+3}$
	functions into partial		FUOLTUIE	

 fractions: Linear factors in the denominator Repeated linear factors in the denominator Quadratic factors in the denominator Quadratic factors in the denominator Students will be able to: Apply the laws of indices Solve equations involving indices Apply the laws of logarithms Solve equations involving logarithm and change of base Draw and interpret graphs of exponential relations	$f(x) = \frac{4(x+1)}{x(x-4)}$ Discuss with the students relation between exponential and indices. i.e. Exponential function f with base a is denoted by $f(x) = a^x$ Where $a > 0, a \neq 1$ and x is any real number. *Note to the students that in many applications the most convenient choice for a base is the irrational number $e = 2.718281828$ Discuss the definition of logarithms function with base a. I.e. for $x > 0$ and $0 < a \neq 1$ $y = log_a x$ if and only if $x = a^y$ Hence $f(x) = log_a x$ is the logarithms function with base a. E.g., Simplify $log_5 5^x$ Solve problems with students involving exponential (indices) and	Markers Colored chalks Pencils	$\frac{2x}{x^2 - 1} \div \frac{x^2 - 2x}{x^2 - 2x + 1}$ Without using mathematical table simplify the following $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$ ii). $16^{-\frac{3}{2}}$ Find the value of x in the following i). $3^{x^{2-1}} = 9^4$ ii) $3^{2x} - 4(3^x) + 3 = 0$ Simplify the following i). $log_5 10 + log_5 12$ ii) $log_3 24 + log_3 15 - log_3 10$ Solve the following equation $log_{10}(5x + 6) = log_{10}(5x - 6)$ $log_{10}(x^2 1) - 2log_{10}x = 1$
or exponential relations	Solve problems with students involving exponential (indices) and logarithm equations E.g., Solve $2(3^{2x-5}) - 4 = 11$ Solve $log_3(5x - 1) = log_3(x + 7)$ Demonstrate the properties of logarithms.		
	$log_a(UV) = log_aU + log_aV$		

Topic/Theme/Unit	Expected learning	Recommended teaching	Suggested	Assessment of learning			
	outcomes	methods	resources	outcomes			
	YEAR 2 FIRST TERM						
Sequences and Series	Students will be able to:	Teacher to explain finite and infinite sequences.		Class excises			
	Differentiate between finite			AP			
	and infinite sequences	Illustrate how to find terms of a sequence $a_1, a_2, a_3, a_4, \dots a_n$		example, the sum of the first seven terms of the series 1,			
	Describe the properties of	1 1 2 3 1 1		4, 7, 10, 13,			
	Recurrence sequences,	Discuss the properties of					
	Arithmetic sequences,	sequences.		Determine the number of the			
	Geometric sequences	a). Recurrence sequences		term			
	Differentiate hature en finite	Generating the terms of a		whose value is 22 in the			
	and infinite series	an explicit formula for the		series $2\frac{1}{2}$, 4, $5\frac{1}{2}$, 7,			
		sequence e.g. $0.9999 = \frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^2}$		Find the sum of the first 12			
	Describe the properties of	$\frac{9}{10} + \frac{9}{10} + \cdots$		terms of the series 5, 9, 13,			
	Arithmetic series	$10^3 10^4$		17,			
	Geometric series	b). Arithmetic sequences					
		A sequence whose consecutive term		GP			
	Calculate the sum of	have a Common Difference		example, find the sum of the			
	Arithmetic sequences and	$a_n = dn + c$					
	Geometric sequences	Un = U1 + (n-1)d		1, 2, 4, 0, 10,			
				Find the sum to infinity of the			
		c). Geometric sequences		series 3. 1. 1 ¹			
		terms have a Common Patio		3, 11			
		$a = a_r r^{n-1}$		Find the tenth term of the			
		$u_n - u_1$		series 5, 10, 20,40,			
		Solve problems involving finite and					
		infinite sequence.					
		Demonstrate the step by step					
		method of calculating sum of					
		Arithmetic sequences and					
		Geometric sequences					
		Sum of Arithmetic series					
		(AP)					

		$S_n = \frac{n}{2}(a_1 + a_n)$ $S_n = \frac{n}{2}[2a + (n - 1)d]$ • Sum of Geometric series (GP) $S_n = \sum_{n=1}^n a_1 r^{n-1} = a_1 \left(\frac{1 - r^n}{1 - r}\right)$ when r<1 $S_n = \frac{a_1(r^n - 1)}{(r - 1)}$ when r>1	
		YEAR 2 SECOND TERM	
Mathematics for finance IRatioRateProportionProfit and lossPercentage change (increase/decrease)	 Students will be able to: Explain the concepts of ratio and determine it. Explain the rate and relate it to ratio. Calculate rates Determine the concept of proportion and how to determine it. 	Discuss the comparisons we make on everyday life and how they are related. You can introduce the concept ratio in terms of number of males in the class to females in the form x to y, x: y (read as x is to y) Explain also that ratios can be expressed as fractions. That is $x: y \Rightarrow \frac{x}{y}$	Arrange students in groups and give them class work to try. Example: <i>Le</i> 2600 was raised at the Mabamba village fun day. It was decided to give 45% to save the children, 30% to street child of Sierra Leone and the rest to the village fund society. How much did the village society receive?
Bills and Tariffs Taxation and Wages	Discuss the concept of profit and loss and explain how to compute profit and loss. Solve problems on percentage increase and decrease.	Introduce rates by comparing quantities that are not alike and ask for examples. Discuss the concepts of increase and decrease. Increase= new value - old value decrease= old value - new value	The pump price for fuel was raised from <i>Le</i> 9500 to <i>Le</i> 10000 per liter. Calculate the percent increase in the pump price. Working on his own, a bricklayer building a wall can lay 288 bricks in 4hrs. How

	Define basic and related terms to taxation like GST.	Demonstrate using the common rate calculation for speed and work through examples.	many bricks can he lay in $6\frac{1}{2}$ hrs?
	Compute income from salaries, house property, capital gains and income from other sources	Explain the concept of proportion and explain means and extremes.	
Mathematics for Finance II	Students will be able to:	Discuss the terms principal, maturity date, the term of loan, blended payment, amortization, and net	Group students and give exercises for them to try in class
Simple interest	interest and show how it relates to the time value of	present value	Example:
Compound interest	money.	Give everyday examples of compound interest such as annuity,	A town borrows <i>Le</i> 2,000,000 at 5% per annum and repays
Future value of an annuity (sinking fund)	Distinguish between simple and compound interest and	car loans, mortgages, etc.	<i>Le</i> 500,000at the end of each year. How much still owes
Present value of an annuity (amortization)	demonstrate how to calculate each.	solve simple compound interest and use a table to show how it works.	after the fourth payment?
	Outline the process of calculating a repayable schedule for a loan with a blend of interest and principal	Provide the formula for calculation of compound interest. That is $A = P\left(1 + \frac{r}{100}\right)^{t}$	
	Lise either formulae or	Relay the importance of investing money over time and how the longer	
	compound interest tables to compute the future and present values of a single payment.	the term the greater the reward.	
Linear inequalities and linear programing	Students will be able to:	Start by explaining the right and left elbows of your body. That the right	Inequalities
Systems of linear	Solve problems on linear inequalities	elbow is representing greater than(>) and the left elbow	Solve the inequalities and represent your solution on a
inequalities in two		represents the less than (<)	number line.
variables	Represent linear inequalities as a regions on		1. $2(x-4) \ge 3x-5$

Linear programming in two variables Business application of linear programming Introduction to simplex method	 the coordinate plane Graph the feasible region in a linear programming problem Sketch a family of profit lines for a given problem Determine the optimum point or solution to a linear programming problem. 	List the other inequality signs and also try to represent your answers on the number line. Draw graphs of inequalities in two variables and shade required regions of interest.		2. $3y < 1 - 2y < 5 + y$ Linear programming A school is preparing a trip for 400 students. The company who is providing the transportation has 10 buses of 50 seats each and 8 buses of 40 seats, but only 9 has drivers available. The rental cost for a large bus is <i>Le</i> 800000 <i>and Le</i> 600000 for the small bus. Calculate how many buses of each type should be used for the trip for the least possible cost. Sketch the graph of the solution of the system of inequalities $x + 2y \le 160$ $3x + y \le 180$ $x \ge 0$ $y \ge 0$
Limito	Studente chauld be oblet	Teacher to explain the concept of	White board	Evolucto
Definition of Limit of a function	Define the concept of limits of a function.	limits	White board	1. $\lim_{x \to 2} x^3 = 2^3$ 2. $\lim_{x \to 2} x = 2$ 3. $\lim_{x \to 5} 3x = 3(5)$

Limit man out a	A market the a line it as a set of		
 Limit properties Limits of constant Limits of the function x^k Limits of the function x Limits of the function kx Limits of the function f(x).g(x) Limits of rational functions Limits involving infinity 	Apply the limit property to evaluate given functions i). If $\lim_{x \to a} f(x) = k$ where k is a constant, then $\lim_{x \to a} k = k$ ii). $\lim_{x \to a} x^k = a^k$ iii). $\lim_{x \to a} x = a$ iv). $\lim_{x \to a} f(x) \cdot g(x) =$ $\lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ = $f(a) \cdot g(a)$ vi). $f(x) = \frac{g(x)}{h(x)}$, then $\lim_{x \to a} f(x) = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{g(a)}{h(a)}$ vii). $\lim_{n \to \infty} f(x)$.	Discuss with the students the properties or theorem of limits with given examples Example: Find $\lim_{x\to 2} (x+3)(x^2-5)$ Solve problems with the students involving application of limit properties	4. $\lim_{x \to 2} (x^2 - 4x + 2)$ 5. $\lim_{x \to 2} \left\{ \frac{x^2 - 7x + 10}{x^2 - 4} \right\}$ 6. $\lim_{x \to \infty} \left\{ \frac{5x^2 - 1}{2x^2 + 1} \right\}$
Introduction to calculusMethods of Differentiation Differentiate a function using first principle.Common functionsProduct rule of differentiationQuotient rule differentiationChain rule (also known as function of a function)	Students will be able to: Define the derivative of a function Differentiate common functions Differentiate a product using product rule. E.g. If y=uv then $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$ Differentiate the quotient using the quotient formula E.g., If y = u/v	Explains the method of finding the derivative of function Discuss with students how to differentiate common functions such as $y = c, y = x^n$, etc and give them the general rules for differentiation. Discuss with pupils through questioning the meanings of product and quotient of numbers. Apply the product and quotient rule to Differentiate functions $y = (2x - 2)(2x^3)$ (Product rule)	Organize students in groups and give them class work to try. Example: Find the differential coefficient wrt x for the functions $y = x^2 - 5x$. $f(x) = \frac{x^2 - 2x}{3 - 4x^2}$.

Successive differentiation (higher derivatives)	then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ Differentiate a function of a function. $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ Differentiate a function successively. E.g., $\frac{d^2y}{dx^2}$	If $y = \frac{(2x-2)}{(2x^3)}$ (Quotient rule) Solve problems on Differentiating function of a function. Teacher to introduce higher or successive differentiation	
 Applications of differentiation Increasing and decreasing functions Stationary points Maximum and minimum points Marginal revenue and total revenue Profit maximization 	Students will be able to: Describe an increasing and decreasing function. Explain how to find the stationary point of a function Explain marginal and total revenue Apply the concepts of differentiation to compute the marginal and total revenue Solve problems on profit maximization	Start by explaining that the derivative of a function is positive over the range where it is increasing and negative where it is decreasing. Also tell students that for all stationary points, the necessary condition is that $\frac{dy}{dx} = 0$. Explain the concepts of marginal and total revenue. Solve simple problems on profit maximization.	Organize students in groups and give them exercises to try. Example: X articles are produced at a total cost of <i>Le</i> ($x^2 + 40x + 10$) and each one is sold for <i>Le</i> ($\frac{1}{3}x + 200$). Find the value of x which gives the greatest profit and find this profit. Find the profit maximizing output for a firm with the total cost function <i>TC</i> = 4 + 97q - 8.5q ² + $\frac{1}{3}q^3$ and total revenue function <i>TR</i> = 58q - 0.5q ² A firm faces the nonlinear demand schedule <i>p</i> = (650 - 0.25q) ^{1.5} . What output should it sell to maximize total revenue?

Topic/Theme/Unit	Expected learning	Recommended teaching	Suggested	Assessment of learning			
	outcomes	methods	resources	outcomes			
	YEAR 3 FIRST TERM						
Matrices	Students will be able to:	Define matrix and explain the order		Ask pupils to explain			
Operations on matrices		of a matrix		different orders of matrices.			
	Define matrix, the order of						
Finding the determinant	matrix (i.e. $2 \times 2, 2 \times 3 \text{ etc}$)	Discuss and illustrate the operations		Organize students in groups			
and	and recognize the types of	on matrices. That is addition,		and give the class exercises			
in the state of a second size	matrices	subtraction, and multiplication two		to solve.			
Inverse of a matrix	E state de service de se	matrices.					
(limited to 2 x 2 matrices)	Explain the operations	Oshus mashlama an datama'n sata and					
Application of matrices	(addition, subtraction, and	Solve problems on determinants and					
Application of matrices	multiplication of matrices						
	up to 3x3 order) and solve	E.g. If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then					
	problems						
variables	Evoluin the determinant	1 (d - h)					
Vallables	and its solution	$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} a & b \\ c & a \end{pmatrix}$					
	Solve problems on the						
	inverse of a 2x2 matrix						
Statistics – Data	Students will be able to:	Review the concept of unarouped	Graph board	Write a short essay on the			
Representation		data	Oraph board	origin and development of			
Roprocontation	Define statistical terms	Introduce the topic by defining	Graph paper	the science of Statistics			
Grouped Data	Bonno statiotical terme	statistics as way of collecting	Chapit papor				
Croupou Bula	Data collection procedure	ordering, analyzing and interpreting	Blackboard ruler	Discuss the utility of			
		data for proper decision making.		Statistics to the state, the			
	Represent statistical data		Foot rule	economist, the industrialist			
	using frequency distribution	Explain some statistical terms:		in a planned economy.			
	tables, histograms.	Discrete data, continuous data.	Markers	, , , , , , , , , , , , , , , , , , , ,			
	cumulative frequency curve	frequency, frequency distribution		Example			
	, , , , , , , , , , , , , , , , , , , ,	table, class interval, etc.	Colored chalks	Draw histogram for the			
				following frequency			
		Discuss how data are represented	Pencils	distribution.			
		by:		Variable: 10-20, 20-30			
		a). Frequency distribution tables		,30-40, 40-50, 50-60			
		b). Histograms		,60—70, 70—80			

		 c). Cumulative frequency Illustrate an example on the graph board how to construct histogram and the ogive curve 		Frequency: 12 30 35 65 45 25 18 respectively
Statistics 1a. Data AnalysisMeasures of Central Tendency (Grouped Data)Measures of Dispersion (Grouped Data)	Students will be able to: Calculate mean, mode, median, quartiles, and percentiles Estimate mode and modal class for grouped data from a histogram Estimate median and mean from grouped data a histogram Calculate mean and standard deviation, variance, range, inter- quartile range	Explain to the students meaning of mode, mean, median, quartiles, and percentiles Discuss with the students the terminologies and columns used as formula to calculate Mode for grouped data $Mode = L + \left[\frac{\Delta_1}{\Delta_1 + \Delta_2}\right]C$ Median for grouped data $Median = L + \left[\frac{\frac{1}{2}N - (\Sigma f)L}{f_{median}}\right]C$ Mean for grouped data $\bar{x} = \frac{\Sigma fx}{\Sigma f}$ Demonstrate how to estimate mode, median and mean for grouped data using histogram. Solve work examples using the various formulae above. Demonstrate how to Calculate mean and standard deviation, variance, range_inter-guartile range	Electronic graph board Graph paper Blackboard ruler Foot rule Markers Colored chalks Pencils	Give students class exercises on measures of central tendencies for grouped and ungrouped data. Example: Construct a grouped frequency table and use the table to calculate the mean median and mode for the data below. 10, 20, 22, 67, 45, 43, 20, 14, 34, 54, 76, 43, 32, 21, 22, 12, 23, 34, 54, 67, 77, 56, 66, 54, 43, 76, 66, 54, 34, 32, 23, 43, 23, 25, 32, 12, 21, 23, 35, 34

Statistics II	Students will be able to:	Explain correlation as means of determine the relationship between	Chart showing	Compute the Spearman rank correlation.
Statistics II Correlation Regression	Students will be able to: Define correlation Describe forms of correlation Draw scatter diagrams Calculate correlation coefficient by Spearman's rank method Draw the line and finding the equation of best fit (Regression)	Explain correlation as means of determine the relationship between two variables. Further discuss with the students that the two variables are independent Demonstrate using the chart to describe the forms of correlation. (Positive correlation, negative correlation and no correlation) Illustrate scatter diagram on a graph board with pair values of two variables. Solve problem with the students to calculate the correlation coefficient using spearman's rank method. *Use data without ties. $r = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$ $-1 \le r \le 1$ Explain the concept of regression	Chart showing types of correlation. Chart Line of best fit.2 Chart – illustrating scatter diagram Electronic Graph board Graph paper Blackboard ruler Foot rule Markers Colored chalks Pencils	History Algebra 35 30 23 33 47 45 17 23 10 8 43 49 9 12 6 4 28 31
Probability – Introductory concepts	Students will be able to: Define probability and related terminologies (sample space, outcome,	Ine and the equation line of best fit. YEAR 3 THIRD TERM Introduce probability as concept of chance and occurrence of event. Discuss the related terminologies with cited examples.	Fair coin Fair dice Colored balls Playing cards Colored marbles	Random experiments, sample spaces, and events A ball is drawn at random from a box containing 6 red

	 relative frequency, occurrence, not occurrence and experiment) Describe probability events as: Equally likely events Mutually exclusive events Independent events Calculate probability value of experiment (coin flip and dice toss) Apply addition rule or product rule of probability Identify conditional probability Draw objects with and without replacement 	Sample space, Outcome, Observation, Events, relative frequency, occurrence, not occurrence and experiment. Describe probability events a). Equally likely events $P(E) = \frac{n(E)}{n(S)}$ For $0 \le p(E) \le 1$ b). Mutually exclusive events If A and B are mutually exclusive then. $P(A \cup B) = P(A) + P(B)$ c). Independent events If A and B are mutually exclusive, then. $P(A \ organ B) = P(A) \times P(B)$ Calculate probability value of various events (coin flip and dice toss etc). Apply addition rule or product rule of probability Draw objects with and without		 blue balls. Determine the probability that it is (a) red, (b) white, (c) blue, (d) not red, (e) red or white. Independent events A fair die is tossed twice. Find the probability of getting a 4, 5, or 6 on the first toss and a 1, 2, 3, or 4 on the second toss. One bag contains 4 white balls and 2 black balls; another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that (a) both are white, (b) both are black, (c) one is white, and one is black.
	Draw objects with and without replacement Construct the tree diagram	Apply addition rule or product rule of probability Draw objects with and without replacement Discuss conditional probability and help students to construct the tree diagram.		
Probability	Students will be able to:	Introduce the fundamental counting principle	Chart illustrating permutation and	Arrange students in groups and give tasks to do.
Permutations	Define permutation and	Evaluation the featuring station (i.e.,)	combinations	
Combinations	Combinations Count outcome of events using permutation (order of	Explain the factorial notation (i.e. $n!$ Read as n factorial)	Iormula	Examples: Evaluate the value of 7!

choices considered) Count outcome of events using combination (order of choices not considered)	Discuss what permutation and combinations are: <u>Permutation</u> as order of choices considered $P_r^n = \frac{n!}{(n-r)!}$ $= n(n-1)(n-2)(n-3) \dots (n-r+1)$	Find the permutation and combination if $n = 12$ and $r = 2$. In how many ways of 4 girls and 7 boys, can be chosen out of 10 girls and 12 boys to make the term?
	<u>Combinations</u> order of choices not considered. $C_r^n = \frac{n!}{(n-r)!r!}$ Solve problem on permutation and	How many words can be formed by 3 vowels and 6 consonants taken from 5 vowels and 10 consonants?
	combination.	Suppose 30 people are in a room. What is the probability that there is at least one shared birthday among these 30 people?

Resources

- Coloured chalk
- White board
- Coins
- Dice
- Coloured counters
- Coloured marbles

- Vanguard
- A4 coloured paper
- Graph board
- Graph paper
- Board ruler
- Foot rule