The New Senior Secondary Curriculum for Sierra Leone

Subject syllabus for Mathematics for STEAMM Subject stream: Mathematics and Numeracy

This subject syllabus is based on the National Curriculum Framework for Senior Secondary Education. It was prepared by national curriculum specialists and subject experts.

Curriculum elements for Mathematics for STEAMM - an applied subject

Rationale for Introduction of STEAMM in the Senior Secondary School Curriculum

The success of the nation as we move through the 21 st century continues to depend on ideas and skills. Increasingly, the influence of technology and the availability of information will shape those ideas and skills, resting in large part on how well we address science, technology, engineering, and mathematics in our senior secondary school education. Science, Technology, Engineering, Agriculture, Mining \& Mathematics (STEAMM) programs provide you with the academic background and training you need to pursue a bachelor's degree, or to immediately launch a career in technology or science fields. STEAMM programmes cover a wide-range of exciting areas such as mathematics and computer science, engineering technology, biotechnology, and life sciences. In addition to integrative experiences connecting the disciplines of STEAMM, students need a strong mathematics foundation to succeed in STEAMM fields and to make sense of STEAMM-related topics in their daily lives.

Topics including robotics, communication, urban transportation, health, space exploration, environmental issues, or disease spread and prevention offer fertile ground for student explorations in STEAMM learning. Students may use mathematics or science to model problems from the aforementioned list as they develop creative approaches and solutions. Mathematics and science play a different role from technology and engineering.

Much can be gained in support of the teaching and learning of mathematics through connecting and integrating science, technology, and engineering with mathematics, both in mathematics classes and in STEAMM activities. Engineering design, for example, offers an approach that nurtures and supports students' development of their problem-solving abilities, a top priority for mathematics teachers. The design process both reinforces and extends how students think about problems and offers tools that can help students creatively expand their thinking about solving problems of all types-the very types of problems and issues that students are likely to encounter in both their personal and professional lives. Mathematics goes beyond serving as a tool for science, engineering, and technology to develop content unique to mathematics and apply content in relevant applications outside of STEAMM fields.

General Learning Outcomes

To develop in all students:

- Mathematics as a language to analyse and communicate information and ideas
- The capacity to use computational and analytic skills for practical use
- Ability to identify mathematical concepts in various engineering fields of study and life science
- The skills to identify mathematics as a tool in the everyday engineering and physical sciences
- An ability to carry out activities and projects in engineering and consequently acquire the values of cooperation, tolerance, and diligence
- An appreciation and enjoyment of mathematics in life situations

Subject Content Outline by Broad Themes \& Specific Topics (General Topics)

	SSS 1	SSS 2	SSS 3
Term 1	- Integers - Fractions, Decimals and Percentages - Ratio, Proportion and Rates - Powers and Roots	- Equations and Formulae [change of subject] - Algebraic fractions - Linear inequalities and Quadratic Inequalities. - Relations, Mapping - Sequence and Series	Statistics - Data Representation - Data Analysis - Correlation - Variance and standard deviation
Term 2	- Approximation/Estimation - Number Bases - Indices - Surds	- Angles, Line and Triangles - Polygons and Congruency - Lines of Symmetry and rotational symmetry - Pythagoras' Theorem (right angle triangle) - Basic Trigonometry ratio in right angle triangle	Probability - Introductory concepts - Permutation and Combination - Binomial Probability Distribution
Term 3	Sets - Describe set and the various types. - Apply the algebra of sets. - Solve two and three set problems (including use of Venn diagrams - Algebraic Expressions (simplification) - Algebraic function and graph Linear, Quadratic, Simultaneous and Cubic Functions	- Mensuration of 2D and 3D shapes - Construction including Loci - Circles	

Subject Content Outline by Broad Themes \& Specific Topics (for Engineering Students only)

	SSS 1	SSS 2	SSS 3
Term 1	- Logarithm (laws of log. without logbook) - Inequalities in linear programming - Logical reasoning - Complex numbers	Calculus - Differentiation - Applications of differentiation - Integration - Applications of integration	Vectors - Vectors and scalars - Properties of vectors (representing vectors, equal vectors, null or zero vector) - The magnitude and direction of a vector - Algebra of vectors - Triangle law of vector addition
Term 2	Polynomial Functions - General characteristics - Partial fraction - Exponential function - Logarithmic function - The Binomial Theorem	- Angles of elevation/depression - Bearings - Circle theorems - Area of sector and length of arc - Similarities - Graphs of trigonometric functions - Trigonometric Identities and proofs	Matrices - Operations on matrices - Finding the determinant and - inverse of a matrix (limited to 2×2 matrices) - Application of matrices (Cramer's rule) to solve simultaneous linear equations in two variables Linear Transformations - The concept of linear transformation - Images of points under given linear transformation
Term 3	Co-ordinate Geometry - Loci - Straight lines - Circles - Parabolas Trigonometry - Trigonometric ratios and rules - Compound angles - Multiple angles	Statics - Resultant and resolving forces into components - Equilibrium of coplanar forces - Types of forces (weight, tension, and trust) - Friction and coefficient of friction	

- Trigonometric functions

Kinematics of a particle

- Speed, time distance velocity and acceleration.

Dynamics

- moment of inertia of a particle and rigid body
- Newton's laws of motion
- Motion of two connected particles
- Momentum and impulse
- Sum of moments
- Equilibrium of a lamina under parallel forces

Subject Content Outline by Broad Themes \& Specific Topics (for Physical Sciences Students only)

	SSS 1	SSS 2	SSS 3
Term 1	- Logarithm (laws of log. without logbook) - Logical reasoning	Calculus - Differentiation - Applications of Differentiation - Integration - Applications of Integration	Vectors - Vectors and scalars - Properties of vectors (representing vectors, equal vectors, null or zero vector) - The magnitude and direction of a vector - Algebra of vectors - Triangle law of vector addition
Term 2	Polynomial Functions - General characteristics - Partial fraction - Exponential function	Statics - Resultant and resolving forces into components - Equilibrium of coplanar forces - Types of forces (weight, tension, and trust) - Friction and coefficient of friction	Matrices - Operations on matrices - Finding the determinant and - inverse of a matrix (limited to 2×2 matrices) - Application of matrices (Cramer's rule) to solve simultaneous linear equations in two variables
Term 3	Polynomial Functions - Logarithmic function - The Binomial theorem	Kinematics of a particle - Speed, time distance velocity and acceleration	

Dynamics

- moment of inertia of a particle and rigid body
- Newton's laws of motion
- Motion of two connected particles
- Momentum and impulse
- Sum of moments
- Equilibrium of a lamina under parallel forces

Teaching Syllabus

Topic/Theme/Unit	Expected learning outcomes	Recommended teaching meth	Suggested resources	Assessment of learning outcomes
YEAR 1/TERM 1				
Integers	Students will be able to: Understand and use integers Understand place value Understand and use directed numbers in practical situations Use the four rules of addition, subtracting, multiplication and division. Use order of operation [BIDMAS]. Use the terms 'odd', 'even', 'prime numbers', 'factors', and multiples' Identify prime factors, common factors, and common multiples	Teacher Modeling and explanations. Examples: Find $2 / 3$ of 180 $\begin{aligned} & =2 / 3 \times 180 \\ & =120 \end{aligned}$	Teacher Handbook Leaflets, Magazines, Newspapers, Bank reports etc. showing percent, decimals, and fractions	Standard Questions from textbooks and past papers. Probing Questions: Which number up to 100 has the most factors? Which numbers less than 100 has exactly three factors? The sum of four even numbers is a multiple of 4 . When is this statement true? When is it false? Can a Prime Number be multiple of 4 ? Why? Multiplication makes numbers higher. When is this statement True? When is it false?

Fractions, Decimals and Students will be able to: Percentages

Convert between fractions
decimals, and percentages

Work using equivalent fractions

Add, subtract, multiply and divide fractions and mixed numbers

Order fractions and calculate fraction of any given amount

Express a given number as a fraction of another number

Use decimal notation and understand Place Value

Order decimals
Recognise terminating and recurring decimals. Know that a terminating decimal is a fraction

Convert recurring decimals to fractions

Explain that 'percentage' means 'number of parts out of 100

Teacher Modelling:
$0.65=\frac{65}{100}=\frac{13}{20}$
Change 0.3 to a fraction in its simplest form. Let Fraction = F
$\mathrm{F}=0.3333$ [multiply by 10]
$10 \mathrm{~F}=3.3333$
$F=\underline{3}=1 / 3$

Convert 0.13 to a fraction
Let Fraction $=F ; F=0.131313$
Multiply by 100
100 F =
13.131313
[Subtract]
99F = 13
$F=\underline{13}$
99
Convert 0.23 to a fraction
Let $\mathrm{F}=0.23333$
Multiply by 10
$10 \mathrm{~F}=2.3333$
Multiply the equation above by 10
$=100 \mathrm{~F}=23.333$
Subtract first equation from the second
90F = 21

$$
\begin{aligned}
& F=\frac{21}{90} \\
& F=\frac{7}{00}
\end{aligned}
$$

Explain to me which fractions or
percentages you can easily work out in your head.

To calculate 10% of a quantity, you can divide the quantity by 10 . So to
calculate 20\%, you
must divide by 20.
True or False?
Explain.
What do you look for first when you are ordering numbers with decimals?

Give me a number between 0.13 and 0.17 Which of the two numbers is it closer to? Give me a fraction between $1 / 3$ and $1 / 2$.
Explain how you did it.
How do you go about finding the multiplier to calculate an original amount after percentage increase or decrease?

Can you find the multiplier if it was a fractional increase or decrease? Explain.

Express a number as a percentage of another number

Express a percentage as a fraction and as a decimal

Calculate percentage increase and decrease

Calculate percentage profit and percentage loss

Use multiplier to calculate reverse percentage [or finding the original]

Distinguish between simple and compound interest and calculate compound interest

Understand and calculate depreciation

Understand and do calculations involving hire purchase and percentage error

Calculate repeated percentage changes.

Multiplier

Explain to students that when a quantity is increased by 20% for example the new quantity is now 120% of the original
[100+20]
120% means $\underline{120}=1.2$ 100
This is called the multiplier.
when a quantity is increased by 15%, the new quantity becomes 115% [$100+15$] of the original quantity. 115% means $115=1.15$.

This is called the multiplier.
Similarly, when quantity is reduced by 150%, The new quantity is 85% [$100-15$] of the original amount. 85%

This means $\underline{85}=0.85$.
100
This is the Multiplier.
Example: In a sale, prices were reduced by 30%. The sale price of a shoe was Le140,000.00. Calculate the original price.

Solution:

30% reduction means $100-30$ which is
70% ie Multiplier is 0.7
Let original price $=\mathrm{N}$
$\mathrm{N} \times 0.7=140000$
$N=\frac{140000}{0.7}$
0.7
$\mathrm{N}=\mathrm{Le} 200,000.00$

Given a multiplier how can you tell whether this would result in an increase or a decease?

Can you do fraction division without changing the division to multiplication and inverting the fraction? Explain.

How do you know that a fraction will produce recurring or terminating decimal?

Which of the following Statement is true or false?

All terminating decimals can be written as fractions.
All recurring decimals can be written as fractions.
All numbers can be written as a fraction.

Give students a set of problems involving repeated percentage changes and a set of calculations. Ask pupils to match the problems to the calculations.

A store gives 20\% discount but you mus also pay a 15% Tax [G.S.T]. What would you prefer to be calculated first? The discount or the tax?

Ratio, Proportion and Rate

Students will be able to:
Use ratio notation including reduction to its simplest form and its links to fraction notation.

Divide any amount in any given ratio or ratios.

Use the process of proportionality to calculate unknown quantities.

Carry out calculations on Direct inverse, Partial and Joint variations.

Solution

4% Interest means multiplier is [100 +4]
104% which is equal to 1.04 . Compound Interest means this is applied each year. So $1^{\text {st }}$ year $=3000000 \times 1.04$
$2^{\text {nd }}$ year $=[3000000 \times 1.04] \times 1.04$
$3^{\text {rd }}$ " $\left.=3000000 \times 1.04 \times 1.04\right] \times 1.04$
This is neatly written as
$300,000 \times 1.04^{3}$

$$
=\text { Le 337,459.20 }
$$

Example

Fatima invests Le300,000.00 in a bank at 4% Compound Interest. Calculate the total amount after a period of 3 years.

Teacher Modeling:

Incorporate real life examples.
Example: it will take a certain number of workers to lay a certain number of building blocks. How many men will it take to lay a certain number of blocks?

Students answer standard questions from Textbooks and Examination board past papers.

Calculate rates of work, foreign exchange, density [including population density, speed, distance, and time.
Powers and Roots
Students will be able to:
Teacher Modelling
Teacher
Handbook
Calculators

Standard questions on Powers and roots.

Probing Questions:
Are the following statements Always, Sometimes or Never true?
-Cubing a number makes it bigger.
-The square of any number is always positive.
-You can find the square root of any number.
-You can find the cube root of any number.

Three security guards each flash their lights at intervals of 5 minutes, 10 minutes and 15 minutes respectively. If they all flash their light at 9.00p.m., when next will they all flash their lights at the same time?

YEAR 1/TERM 2

Approximation and Estimation	Students will be able to: Round numbers to a given number of decimal places or significant figures Identify and solve problems using upper and lower bounds where values are given to a degree of accuracy	Teacher modelling	Teacher handbook	Standard questions on rounding to decimal places and significant figures. Questions on upper and lower bounds.
Standard Form	Students will be able to: Convert ordinary number to standard form. Convert standard form to ordinary number. Solve problems involving standard form.	Teacher Modelling Writing ordinary numbers in standard form Writing numbers in standard form as ordinary number	Teacher Handbook	Standard questions on standard form from past questions Probing questions: What are the key conventions when using standard form? How do you go about expressing a very small number in standard form
Number Bases	Students will be able to: Understand concept of number bases in counting systems Convert numbers from one base to another Perform basic operations on number bases	Teacher Modelling Explain the concept of number bases and the idea of counting in groups.	Teacher Handbook	Students answer standard questions on number bases. Probing Questions: What will happen to the digits if a number in base two when it is: [a] multiplied by two [b] divided by two

Solving equations involving number bases

Surds

Students will be able to:
Write an integer as a product of its prime factors in index form.

Use index laws to simplify and evaluate numerical expressions involving integer fractional and negative powers.

Solve indicial equations
Students will be able to:
Perform the four operations on surds (,,$+- \times \& \div$)

Rationalise the
denominator (including
binomial denominators)

Teacher modelling:
Expressing a number as a product of its prime factors in index form.

The rules of Indices
Solving equations involving indices

Review the concept of perfect squares

Discuss with the students how a multiple number is simplify into two factors Eg. $\sqrt{500}=\sqrt{100 \times 5}$ $=10 \sqrt{5}$

Solve problems with students involving addition, subtraction, multiplication and division of surds.

Demonstrate to the students how to rationalise denominators

How many different symbols exist in a base five system? What are they?

The Limbas and Sherbro people count in base five. Can you investigate what base is counting done in your language and any two other languages?
Students answer standard questions from past examination board papers.

Probing Questions:
What is the value of c
in the question?
$48 \times 56=3 \times 7 \times 2^{c}$
What does the index of $1 / 2$ represent?
Class exercises
E.g. Simplify $\sqrt{225}$,
$\sqrt{243}$ Etc.
Evaluate and leave
your answer in $a \sqrt{b}$
a). $\sqrt{50}+\sqrt{18}$
b). $\sqrt{847}-\sqrt{175}$

Rationalize the denominator

YEAR 1/TERM 3				
Sets Theory	Students will be able to: Explain what a set is and describe the types of sets Use the language and notations of set. Interpret, draw and use Venn diagrams to solve problems.	Teacher Modelling Introduce the topic of set Talk about language and notations of set e.g. members, cardinality, intersection, union, compliments. Talk about types e.g. universal, unit set, null set, sub set etc. Interpret and draw Venn diagrams.	Teacher Handbook Diagram of various set type on vanguard Illustrated Venn diagram on vanguard	Answer standard questions on set theory from Examination Board past papers. Ask student short answer questions E.g., Name any 3 types of set. Write two sets and ask students to illustrate union, intersect and complement of set. Write a three sets word problem on the board and asked the students to calculate i). One only ii) Both iii)All the three
Algebraic Expressions	Students will be able to: [i] collect like terms [ii] Expand single brackets. [iii] Expand double brackets [iv] Factorise algebraic expressions by: - Linear factorization - Difference of 2 squares - Quadratic factorisation	Teacher Modelling When modelling, explain to students that factorisation can be viewed as a reverse process of expansion. When factorizing simple quadratic expressions, get children to work in groups of 4 or 5 . -recall the process of expanding double brackets and simplifying. Example:	Teacher Handbook	Students answer standard questions especially those from past Exam Board Questions. Probing Questions What is a quadratic expression? How would you recognise a quadratic expression?

- Group factorisation
- Solve word problems in context.

Linear Functions

Students will be able to:
Identify linear function represented by a straightline graph

Sketch graphs of linear

$$
\begin{aligned}
& (x-3)(x+4) \\
& x(x+4)-3(x+4) \\
& x^{2}+4 x-3 x-12 \\
& x^{2}+x-12
\end{aligned}
$$

Give students several quadratic expressions with coefficient of $x^{2}=1$ and ask them to work backwards and find the two brackets that were multiplied together to produce the quadratic expression given.

When students think they have found their wo brackets get them to expand their brackets and simplify to self-check if they are correct.

Students need support with the manipulation of signs.
Ask pupils to clearly write down their rules and how they got their answers.
Ask pupils to do presentation to the class.
Clarify misunderstandings and misconceptions.

Discuss linear function as a graph $f(x)=a x+b$ is a line with slope $m=a$ and y-intercept at ($0, b$).

Teacher Use the graph board, Blackboard ruler, colored chalks and allow students to

Graph board
Graph paper Blackboard ruler
Foot rule
Markers
Colored chalks Pencils

Why is $(x+5)(2 x-3)$ a
quadratic expression?
What is the difference between a quadratic expression and a cubic expression?

When $(x+6)(x+3)(x-$ 1) is expanded and simplified what expression will you get?

Give students examples of multiplying out a bracket with errors. Ask them to identify and talk through the errors and how they should be corrected.

Example:
$4(b+2)=4 b+2$
$3(p-4)=3 p-7$
$2((5-b)=10-2 b$
$12-(n-3)=9-n$
Plot the points and find the slope of the lie that passes through the pair of points
i). $(-3,-)$ and $(1,6)$
ii). $(2,4)$ and $(4,-4)$

equations

Derive equations of linear equations using
a) slope-intercept
b) slope point
c) two points

Find equations of parallel and perpendicular lines to a given line

Solve simultaneous linear equations graphically or algebraically

Quadratic functions
Students will be able to:
Recognise quadratic
functions represented by a parabola

Sketch graphs of quadratic functions using turning points, intercepts and axis of symmetry
Determine the nature of the
roots of a quadratic
equation Use the
work on graph paper to demonstrate how to sketch linear graph

Help the students derive equations of linear equations using
a) slope-intercept

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

b) point - slope

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

c) two points

$$
D(x, y) \text { and } R(x, y)
$$

Parallel line $\leftrightarrow m_{1}=m_{2}$
Perpendicular line
$m_{1} m_{2}=-1$
Where $m_{1} m_{2}$ are gradients of the two lines?
Teacher Use the graph board, Blackboard ruler, Colored chalks and allow students to work on graph paper to demonstrate how to sketch simultaneous linear equations graphically and algebraically (including methods of elimination and substitution

Teacher to define quadratic function. Let a,
b , and c be real numbers with $a \neq 0$. The
function $f(x)=a x^{2}+b x+c$
Use the graph board, blackboard ruler to illustrate quadratic graph turning points, intercepts and axis of symmetry.

Solve problem on quadratic equation by
a) Graphical method
b) Factorizing method
c) Completing the square
d) Quadratic formula

Use the point on the line and the slope of the line to determine the general equation of the line.

1. Point $(2,1)$ and slope $m=1$
2. Point $(-5,4)$ and slope $m=2$

Determine whether the lines L_{1} and L_{2} are parallel or perpendicular
i). $L_{1}(0,-1),(5,9)$
$L_{2}(0,3),(4,1)$
. $L_{1}(3,6),(-6,0)$
$L_{2}(0,-1),\left(5, \frac{7}{3}\right)$
Solve the following pair of simultaneous linear equations: $2 x+3 y=8$ $3 x+2 y=7$ Using elimination, substitution and graphical methods.

- Graph Solve the quadratic equation by completing board equation
- Graph paper
- Blackboard I. $x^{2}+4 x+1=0$ ruler
- Foot rule
- Markers
- Colored chalks
Pencils

$$
\text { I. } x^{2}+4 x+1=0
$$

Solve the quadratic equation by formula method

$$
-4 x^{2}+x+3=0
$$

discriminant
Solve quadratic equations by
a) Graphical method
b) Factorizing method
c) Completing the square
d) Quadratic formula

- Derive quadratic equations given sufficient information
- Solve simultaneous equations for one linear, one quadratic
- Extend concepts to sketching and solving quadratic inequalities

Cubic functions
Students will be able to:
Recognise cubic functions as functions of degree 3

Draw graphs of cubic functions for a given range

Factorise and solve cubic equations

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Demonstrate the Roots of quadratic
equations - equal roots ($b^{2}-4 a c=0$), real and
unequal roots ($b^{2}-4 a c>0$),
imaginary roots ($b^{2}-4 a c<0$);
sum and product of roots of a
quadratic equation
e.g. if the roots of the equation $3 x^{2}+5 x+2$
$=0$ are α and β, form the equation whose
roots are $\frac{1}{\alpha}$
and $\frac{1}{\beta}$.
Solving quadratic inequalities

Discuss cubic functions as functions of degree 3
e.g. $f: x \rightarrow a x^{3}+b x^{2}+c x+d$.

Teacher should support students to Draw graphs of cubic
functions for a given range.
Explain how to Factorize cubic
expressions and solution of
cubic equations.
Factorization of $a^{3} \pm b^{3}$

Solve the quadratic equation by graphical method.
i. $-4 x^{2}+x+3=0$

Cubic Function

Determine the roots of
the cubic equation
$2 x^{3}+3 x^{2}-11 x-6=0$
Find the roots of the cubic equation $x^{3}-6 x^{2}+11 x-6=0$

Solve the cubic equation $x^{3}-23 x^{2}+$ $142 x-120$

Find the roots of $x^{3}+$ $5 x^{2}+2 x-8=0$ graphically.

YEAR 2/TERM 1

Equations and
Formulae [change of
subject]

Algebraic fractions

Students will be able to:
Rearrange a formula or equation to change the subject; including cases where the subject appears more than once or has powers.

To evaluate a letter by substituting into a formula given the values of other letters.

Students will be able to:
Simplify algebraic fractions with monomial and binomial denominations.

Teacher modelling on rearranging formula.
Explain that in a formula, a letter usually stands alone on one side of the equal to sign whilst the other letters and/or numbers are all on the opposite side. The letter that stands alone is called the subject of the equation.

Example
Make r the subject of
$V=\underline{4} \pi r^{3}$
Make L the subject of
$\mathrm{T}=2 \pi \sqrt{\mathrm{~L} / \mathrm{G}}$
When modelling, explain to students that the process of changing the subject of a formula is similar to the process of solving equations.

This is because when solving an equation in x for example, we end up with x on its own on one side of the equal to sign.

Model substitution into a formula.

Teacher Modelling
Example: Simplify
[i] $1 / a+1 b$
[ii] $1 / x+2+3 / x-2$

Teacher
Handbook

Teacher Handbook

Standard Questions on change of subject.

Probing questions:
What do you mean by the subject of a formula?

How do you decide on the steps you need to take to rearrange a formula? What are the important conventions?

What strategies would you use to rearrange a formula where the required subject occurs twice?

What are the similarities and differences between rearranging a formula and solving an equation?

What precautions would you take when substituting negative values into a formula? Students answer standard questions on algebraic fractions.
[iii] $3 x^{2}+9 x$

$$
\overline{x^{2}+4 x}+3
$$

[iv] $\frac{x^{2}+3 x-4}{x^{2}+x-2}$
Linear inequalities and Quadratic Inequalities

Students will be able to:

Explain what an inequality is and the signs associated with it.

Solve problems on linear inequalities and represent on a number line.

Draw and interpret graphs of inequalities and represent areas defined by inequalities by shading.

Solve simple quadratic inequalities in one unknown and represent the solution set on a number line.

> E.g. $x^{2} \leq 36$
> $4 x^{2}>25$
> $x^{2}+3 x+2>0$

Apply inequalities to simple real life situations [Linear programming]

Teacher Modelling
Explain to students that the techniques used in solving equations is the same used in solving Inequalities.

Model solving an equation like $3 x+2=10$ alongside and Inequality like $3 x+2>10$.

Model representation on a Number Line.
When shading areas to define inequalities, remind students to shade off the wrong area of each inequality as they are drawn.

Model the use of linear programming to solve real life situations like profit maximisation.

Example: A group of students hired the school hall that holds 200 people for their end of year concert. They priced their tickets at $\$ 2$ or $\$ 3$ each. They agreed they will need to raise $\$ 450$ from this concert. They also decided that the number of $\$ 3$ tickets must not be greater than twice the number of $\$ 2$ tickets. If they sell x tickets at $\$ 2$ each and y tickets at $\$ 3$ each, calculate the maximum profit they could make.

Teacher

Handbook
Graph paper

Students to answer standard questions on Linear Inequality and Linear Programming

Probing Questions:
How did you go about finding the solution set for this Inequality? What are the important conventions when representing the solution set on a Number Line? Why does the inequality sign change when you multiply or divide the inequality by a negative number?
How many Inequalities do you need to describe a closed region? Convince me.

How do you check if a point lies:
-inside the region -outside the region -on the boundary of the region.

Relations, Mapping \begin{tabular}{l|l}
Students will be able to:

\& | Distinguish between the |
| :--- |
| various types of relation |

Use function notation to
describe simple function

\end{tabular} [Mappings]

Find the range of a function for a given domain.

Find the inverse of a given function.

Work with Composite

 functions
Sequence and Series Students will be able to:

Distinguish between a sequence and a series and be familiar with the

Teacher Modelling and explanations.
Discuss relations and explain the relations.
Teacher
Handbook

- Many-to-many
- One-to-many
- Many-to-one
- One-to-one

Relate functions to a number machine with input and output.

Input \rightarrow multiply by $2 \rightarrow$ add $5 \rightarrow$ output
For any input the instruction is to multiply that input by 2 first and then add 5 .

If the Input is x, then the output is $2 x+5$.
This number machine is an example of a function, which is a process that takes one number and turns it into [maps into] another number.
We say x is mapped to $2 \mathrm{x}+5$.
Functions are often given names such as $\mathrm{f}, \mathrm{g}, \mathrm{h}$, and so on. The rule for the above function is written as:
$F(x)=2 x+5$ or
$F: x \rightarrow 2 x+5$ using arrows instead.

Explain:

- Domain and Co-domain
- Inverse function
- Composite functions

Teacher Modelling
Explain sequence
Explain series

Teacher
Handbook
Multilink Cubes
Matchsticks
Counters

Students to answer standard questions on functions

Students answer standard Question on A.P and G.P including those from past Exam Board question papers.
language and symbols of sequences.

Be familiar with the sequence of odd number, even numbers, square numbers, cube numbers, Triangular numbers, Prime numbers, and continue a sequence with more terms.

Recognise an Arithmetic Program and find its general term and sum of terms.

Recognise a geometric progression and find its general term and sum of terms.

Explain the terminologies e.g. terms, difference, last term, number of terms, sum of term, first term, common ratio, sum of terms and their respective symbols.

Explain how to use the common difference
[d] and first term [a] in an arithmetic sequence. Eg given $2^{\text {nd }}$ term is 7 and $5^{\text {th }}$ term is 19 , find a and d.

Model the use of nth term $=a+(n-1) d$
Model the use of Sum of terms
$=\frac{\mathrm{N}}{2}(\mathrm{a}+\mathrm{L})$ where L is the last term.
2
$=\underline{N}(2 a+(N-1) d)$

Model use of general term and sum of G.P
Get pupils in groups and ask them to produce their own sequences from everyday objects.
Example: Matchsticks, multilink cubes,
Matchboxes, counters and present a
formula for the general term of their
sequence.

Matchboxes
Probing Questions:
[i] can you find a quick way of adding up the numbers from 1 to 10 to give 55 ? [without
calculator]
[ii] what about adding
up the numbers from 1
to 20.
[iii] what about adding
the numbers from 1 to
100.
[iv] what do you look for
to decide whether a
sequence is Linear or
Quadratic?

YEAR 2/TERM 2				
Angles, Line and Triangles	Students will be able to: Distinguish between acute obtuse reflex Draw and measure angles and right angles.	Teacher Modelling Angles around a point Vertically opposite angles Alternate angles Corresponding angles	Teacher Handbook Protractors	Students answer standard questions on angles and parallel lines. Students to draw their angles and measure using protractor as

Use angles related to intersecting lines and parallel lines.

- understand the exterior angle of a triangle property and the sum angle of a triangle property.
- understand the terms 'Isosceles', equilateral , 'Scalene' and rightangled triangles' and their related properties.

Students will be able to:

Recognise and give the names of polygons.

Know angle sum of a quadrilateral, name all quadrilaterals and state their properties.

Know what a regular polygon is and calculate interior and exterior angles of regular polygons.

Derive the sum of angels of a polygon, of n sides as (N 2) 180 .

[^0]Interior [allied] angles
Teacher to identify local resources as examples of the different triangles.

Students to physically draw several angles and measure using protractor.

Teacher Modelling

When modelling sum of angles of a polygon, use an investigative approach. Students draw out triangles in quadrilaterals, Pentagon, hexagon etc and fill a table similar to the one below.

Students to look for connection between the Number of sides and the possible number of triangles in the shape and if 1 triangle has 180°, then for any number of triangles, find the sum by multiplying by 180°
students to also draw given angles

Teacher

Handbook

Students to answer standard questions.

Probing Questions:
Describe a rectangle precisely in words so that someone else can draw it.

What mathematical words are important when describing a rectangle?
what properties do you need to be sure a
triangle is Isosceles, or equilateral or scalene?
which of the following statements are true? -any two right angle triangles will be similar.

MBSSE's Senior Secondary School Curriculum

	Know the meaning of congruent shapes			-All circles are similar -if you enlarge a shape you get two similar shapes. Which quadrilateral has only 1 line of symmetry? True or false? Explain -A square is a rectangle but a rectangle is not a square. -some trapezia may not have a line of symmetry. -A rhombus is a parallelogram but a parallelogram is not a rhombus. Which quadrilateral can have 3 acute angles? Which triangle is a regular polygon? Which Quadrilateral is a regular polygon?
Lines of Symmetry and rotational symmetry	Students will be able to: Identify lines of symmetry and the order of rotational symmetry of a 2D figure	Teacher Modelling: Rotational symmetry is when a shape can rotate and fits into itself as it is rotated. The number of times it will fit into itself before reaching its original position is called the order.	Car wheel covers Car 'badges'	Students to answer standard Questions

MBSSE's Senior Secondary School Curriculum

Pythagoras' Theorem (right angle triangle)	Students will be able to: Calculate in right angled triangles using Pythagoras Use the trigonometric ratios to calculate lengths and angles in right angle triangles. Use sine and cosine rules to calculate lengths, distances and angles in non-rightangle triangles.	Teacher Modelling Recap Pythagoras theorem. Do initial work on labelling of sides of rightangle triangle with given angle. Students must be able to identify opposite, adjacent and hypotenuse before moving on to main task.	Teacher Handbook	Standard questions on Pythagoras and Trigonometry. Probing Questions: How do you decide whether a problem requires use of a trigonometric relationship [sine, cosine or tangent] or Pythagoras theorem to solve it? Why is it important to understand similar triangles when using trigonometric relationships? $A B C D$ is a square and X is a midpoint on $A B$. Calculate angle AXD
Basic Trigonometry ratio in right angle triangle	Students will be able to: calculate the values of trigonometric ratios of 30°, 45° and 60° and to do calculations involving trigonometric ratios	Teacher Modelling Use the Unit square to derive the values of $\operatorname{Sin} 45^{\circ}$, $\operatorname{Cos} 45^{\circ}$ and $\operatorname{Tan} 45^{\circ}$ Use the standard Equilateral Triangle of length 2 units to derive the values of $\operatorname{Sin} 30^{\circ}, \operatorname{Cos} 30^{\circ}$, Tan $30^{\circ}, \operatorname{Sin} 60^{\circ}, \operatorname{Cos} 60^{\circ}, \operatorname{Tan} 60^{\circ}$	Teacher Handbook	Standard Questions on trigonometric ratios including from Exam board past papers. Fi $\sin x=3 / 5$ What is Cosx? What is $\tan x$?

YEAR 2/TERM 3

Mensuration of 2D shapes	Students will be able to: Convert measurements within the metric system including Linear and area units. Find area and triangles and rectangles including compound shapes. Find area of parallelograms and trapezia. Distinguish between Metric and Imperial units	Teacher Modelling Converting cm^{2} to m^{2} and vice versa. Opportunities for practical activities to be exploited. Example: students expected to measure and calculate areas and perimeter of accessible areas in the school environment eg doors, tables, surfaces, school playground. Identification of shapes from the local environment. E.g. paper currencies are rectangles. Clarify the misconception of base and height of a triangle by explanation and diagrams.	Teacher Handbook Measuring Instruments Trundle wheel Measuring tapes	Students answer standard questions. Discussing with students during practical activities. Probing Questions: Yeabu said there can only be one triangle with an area of $12 \mathrm{~cm}^{2}$ Tommy disagrees. Explain why Tommy is right. The base and height of a triangle are always at 90° to each other. State whether this statement is Always, sometimes or never true. Is the following statement always, sometimes, or never true? If a rectangle has a larger perimeter than another one, then it will also have a larger area.
Mensuration of 3D shapes	Students will be able to: Recognize and name 3D solids	Teacher Modelling	Teacher Handbook 3D sets of models including solids	Standard questions on 3D shapes and volumes.

Building Young Futures
MBSSE's Senior Secondary School Curriculum
Understand the terms 'face' 'edge" and 'vertex' in the context of 3D solids.

Distinguish between Prism and non-Prisms [i.e. Prisms have a uniform crosssectional area all along its length]

Find the volume of Prisms and non-Prisms like Cone, Pyramid and compound shapes.

Understand what total
surface area is and calculate total surface area of 3D shapes,

Convert between units of volume within the metric system i.e. cm^{3} to m^{3} and vice versa. I Litre = $1000 \mathrm{~cm}^{3}$

Construction including Loci

Students will be able to:

 construct:Angles bisectors and bisectors of line segment.

A perpendicular from a point to a line.

A perpendicular from a point on a line.

3D shapes to be displayed to include cube, cuboid. Prisms, pyramid, cylinder, sphere, hemisphere, cone, frustum.

Teacher Modelling
 -Model the whole of construction to include

 angles $75^{\circ}, 105^{\circ}$, and 135°Teacher Modelling

Make connection between Loci and

 Construction.Example: A perpendicular bisector of a line $A B$ is the Loci of points equivalent from A and B

A line parallel to another line.

Angles $90^{\circ}, 60^{\circ}, 45^{\circ}$ and 30°
Triangles and quadrilateral with enough information

Students to understand the concept of Loci and
construct Loci of:
[i] points at a given distance from a given point [a circle] [ii] Points equidistant from 2 given points [bisector of a line]
[iii] Points equidistant from 2
given lines [Angle bisector]
[iv] Points at a given distance from a given line [Line parallel to another line]
[v] Apply Loci to real life

situations.

Students will be able to:
Recognise parts of a circle.
E.g. centre, radius, diameter, circumference, tangent, arc, sector, segment, chord segment,

Students will be able to:

 calculate Area andCircumference of a circle, including Compound shapes and semi circles.

For which constructions is it important to keep the same compass arc? Why?

The following are given as lengths of triangles which ones can never be triangles?
Explain:
[i] $5 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$
[ii] $8 \mathrm{~cm}, 4 \mathrm{~cm}, 13 \mathrm{~cm}$
[iii] $9 \mathrm{~cm}, 6 \mathrm{~cm}, 15 \mathrm{~cm}$
[iv] $7 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$
[v] $12 \mathrm{~cm}, 8 \mathrm{~cm}, 3 \mathrm{~cm}$
Students to answer standard questions on Loci

Teacher Handbook Various round objects, circles. Measuring instruments e.g. Calipers, ruler, tape measures Strings, thread

Students answer standard questions on Circles.

Probing Questions:
State one similarity and difference between a chord and a diameter.

Students will be able to: investigate the relationship between the Circumference and diameter for various circles and obtain a Value for 'pi'.

Students to divide the circumference by the diameter. What conclusions can they draw. This value is an estimate of the Constant Pi .

Statistics --Data

Representation

Statistics - Grouping
Data

Students will be able to:
Recognise, construct and interpret pictograms, bar charts, [vertical, horizontal and composite] and pie chart.

Use ICT [Spreadsheet] to design charts.

YEAR 3/TERM 1

Display various charts as seen in real life situations E.g. newspapers [Awoko business], adverts, magazines, websites.

Get students to identify charts and discuss amongst themselves before asking them to share with the whole class their understanding of the charts and what information they can draw.

Students will be able to:
Construct grouped frequency table with equal class intervals and identify the modal class interval from grouped frequency table.

Construct and interpret frequency diagram from group discrete data.

Newspapers, reports, advertisement, magazines. compasses and rulers secondary data

Display the various charts as seen from real life examples from newspapers, adverts, textbooks and magazines.

Pupils given opportunities to talk about charts
/diagrams/graphs and their understanding of the charts.

Model the construction of each chart.
Ensure pupils understand scaling of axis.

Students are given secondary data and asked to construct appropriate charts.

Asking probing

 questions -How did you decide on how to organize your table of results? -What made your chart easy or difficult to construct? -Which chart[s] is mainly used to represent categorical data?Pupils answer standard questions on constructing tables and drawing frequency diagrams, Histograms, Frequency Polygons.

Probing questions: What difference[s] can you see between a frequency diagram and a histogram?

Construct and interpret Histograms from grouped continuous data

Construct frequency
polygons and compare two or more sets of data using super imposed frequency polygons.
Students will be able to:
-Estimating Mean from grouped data, -Identify modal class for grouped data and the class interval that contains the median.

Calculate an estimate of the Mean from grouped data.

Identify the Modal class interval and the class interval where in the median of the data lies.

Pupils construct their own diagrams.
Pupils' work put on display.

Review prior knowledge from SSSI on
Mean, Median, Mode and Range from a list.
Also review Mean from Frequency Table.
Review - Tallying of data for Frequency table.
Use of the inequality sign when grouping data.

Teacher models how to estimate Mean for grouped data, and show how this is almost similar to calculating Mean from a Frequency table.

The concept of 'mid-point' should be carefully modelled and 'teased-out' from students by questioning and finally concluding that the mid-point is merely representing all the numbers within a class interval. Hence the Mean becomes only an estimate. Explain to students that by grouping the data, we have lost the frequency of the individual members of the class - interval. We only have the total frequency of the class interval.

Teacher Models how to identify the Modal class interval and the interval where the Median lies.

If you were to collect data to draw a
histogram, what type of data would you collect? Give examples of such data.
What is important when choosing the scale of your graphs.
Students answer standard questions.

Probing Questions:
Why is it only possible to estimate the Mean from grouped data?

Why is the Mid-Point of the class interval used to calculate an
estimated mean?
Why not the end of the class interval?

Write an essay on the steps you will take to estimate the Mean from grouped data.

How could you possibly use a grouped frequency table to estimate the range and the median.

Tabulation and
Representation
Representation

- Cumulative Frequency curve from grouped discrete data
- Estimating Median and Interquartile range

Deciles and Percentiles

Statistics - Variance

 and standard deviationStudents will be able to:
Complete a cumulative frequency table and draw a cumulative frequency curve.

Use the cumulative
frequency curve to estimate Median, quartiles and Interquartile range.

Students will be able to: estimate deciles and percentiles from Cumulative Frequency graphs.

Students will be able to:

Explain that variance is a measure of spread that uses all the data, unlike the interquartile range that uses two values, the upper and lower quartile.

Recall that the square root of the variance is called standard deviation.

Calculate variance and standard Deviation by use of formulae including standard deviation formulae for frequency distributions and grouped frequency distribution.

Teacher models completion of cumulative frequency table and drawing of Cumulative Frequency Curve.

Teacher Modelling:

-Model estimate
How to estimate deciles and percentiles from completed Cumulative Frequency Diagrams.
Teacher modelling:
Model use of formulae to calculate variance and standard deviation.

Graph Papers Teacher's Handbook

Completed

 cumulative frequency diagrams Teacher
Handbook

Teacher

 Handbook and formulaeStudents to answer standard questions on Cumulative Frequency

Students answer standard questions on deciles and percentiles.

Standard questions on Variance and Standard deviation.

Probing Questions:
You are given several data sets. Some with outliers and some without outliers. If you are to measure spread, explain which ones you will apply the interquartile range to and which ones you will apply the variance to.

Draw a sample space diagram for given events.

Determine the probability of an event occurring from a sample space diagram.

A sample space of all outcomes when two coins are spun together.

Standard questions on probability including probability scale

The Probability of getting a ' 3 ' when a die is thrown is $1 / 6$. Can you explain why?

When a coin is tossed, the probability of getting tails is $1 / 2$. Can you explain why?

Give me examples of probabilities for events that could be described using the following words:

- Impossible
- Certain
- Unlikely
- Even chance

Show these on a Probability Scale.

Students answer standard questions with confidence.

Probing Questions:
A match box is to be used as a die. The two largest faces are each marked with 1 and with 6 . The next two largest faces are marked with 2 and with 5 and the two smallest faces are each

Students can use the fact that the sum of all mutually exclusive outcomes of an event is 1
-use the addition rule of Probability for mutually exclusive events, -calculate expected frequency

Probability
-Independent events and tree diagrams

Students will be able to

calculate probabilities of repeated events.

Draw and use Probability tree diagram
students know the term "independent events" use of the multiplication rule for probability
$P[A$ and $B]=P[A] X P[B]$

Teacher Modelling:

Explain to students that independent events are events in which the probability of one event occurring does not affect the probability of the other event occurring. Example: getting Heads, when a coin is flipped and obtaining an even number when a die is rolled.

Model the construction of a tree diagram for:
A box has 4 blue and 6 black yellow counters.
marked with 3 and with 4.

What two faces will
have the largest probability of facing up when the matchbox is
thrown as a die?
Explain why.
Explain how you would estimate the Probability of obtaining a ' 3 ' when the matchbox is thrown as a die.

Design an experiment you will carry out to estimate the probability that the first car that goes past the school entrance after 8am is a green car.
Teacher Handbook Counters

Students answer standard questions on Probability tree diagrams.

Probing Questions
In a city, 80 people with Coronavirus symptoms were tested for the virus using a new trial kit. 19 people tested positive. The virus only developed in 11 people who tested positive. A total of 67 people did

A counter is picked at random, the colour noted and then replaced. This is done a second time.

List out all possible 4 outcomes
i.e.: Blue and Blue

Blue and yellow
Yellow and blue
Yellow and yellow
And explain to students that use of a tree diagram will make them avoid missing any combination.

Model the multiplication rule for probability of independent events and apply to standard questions on Probability.

Emphasise the language of probability when answering questions. E.g. 'both', 'either', 'neither', 'with replacement', 'without replacement', 'at least', 'at most'.

Also incorporate the Addition rule for probability when modelling solutions on probability.
not develop the virus at all.
Using a tree diagram what is the probability that a person will develop the virus.
Give me an example of:
a problem which could be solved by adding Probabilities'.
a problem which could be solved by multiplying Probabilities.

What are the key features of mutually exclusive and independent events on the tree diagram?

Why do the Probabilities on each set of branches have to sum up to 1 ?

How can you tell from a completed tree diagram whether the question specified 'with' or 'without' replacement?

What strategies do you use to check that Probabilities on your tree diagram are correct?

MBSSE's Senior Secondary School Curriculum

				Explain to me the steps you took to draw this tree diagram and how to use it to find the probability of this event.
Conditional Probability	Students to: Decide if two events are independent. Draw and use tree diagrams to calculate conditional probability	Teacher Modelling: explain conditional probability as the probability of a dependent event. The probability of the second outcome depends on what has already happened in the first outcome. Model Tree Diagrams from standard Questions and answer standard questions.	Teacher Handbook	Student answer standard questions on conditional probability.

PART 2:

TOPICS FOR ENGINEERING STUDENTS ONLY

YEAR 1/TERM 1				
Logarithmic and exponential Functions	Students will be able to: Apply the laws of indices Solve equations involving indices Apply the laws of logarithms Solve equations involving logarithm and change of base Draw and interpret graphs of exponential relations	Discuss with the students the relation between exponential and indices. i.e. Exponential function \boldsymbol{f} with base \boldsymbol{a} is denoted by $f(x)=a^{x}$ Where $\mathrm{a}>0, \mathrm{a} \neq 1$ and x is any real number. *Note to the students that in many applications the most convenient choice for a base is the irrational number $e=$ 2.718281828 Discuss the definition of logarithms function with base a. i.e. for $x>0$ and $0<a \neq 1 \quad y=$ $\log _{a} x$ if and only if $x=a^{y}$ Hence $f(x)=\log _{a} x$ is the logarithms function with base a. E.g. Simplify $\log _{5} 5^{x}$ Solve problems with students involving exponential (indices) and logarithm equations E.g. Solve $2\left(3^{2 x-5}\right)-4=11$ Solve $\log _{3}(5 x-1)=\log _{3}(x+7)$ Demonstrate the properties of logarithms. $\begin{aligned} \log _{a}(U V) & =\log _{a} U+\log _{a} V \\ \log _{a}\left(\frac{U}{V}\right) & =\log _{a} U-\log _{a} V \end{aligned}$	Graph board Graph paper Blackboard ruler Foot rule Markers Colored chalks Pencils	Without using mathematical table simplify the following $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$ ii). $16^{-\frac{3}{2}}$ Find the value of x in the following i). $3^{x^{2-1}}=9^{4}$ ii) $3^{2 x}-4\left(3^{x}\right)+3=0$ Simplify the following i). $\log _{5} 10+\log _{5} 12$ ii) $\log _{3} 24+\log _{3} 15-$ $\log _{3} 10$ Solve the following equation $\begin{equation*} \log _{10}(5 x+6)=\log _{10}(5 x \tag{-6} \end{equation*}$ ii). $\log _{10}\left(x^{2} 1\right)-2 \log _{10} x=$ 1

MBSSE's Senior Secondary School Curriculum

		$\log _{a} U^{n}=n \log _{a} U$ *Note to the students that there is a natural logarithmic function defined by $f(x)=\log _{a} x=\ln x \quad x>0$		
Inequalities in Linear Programming	Students will be able to: sketch and solve linear inequalities Apply linear inequalities to Linear Programming	Explain symbols involve in Sketching and solving linear inequalities $(<,>, \leq, \& \geq)$ Linear Inequalities $\text { e.g. } 2 x+5 y \leq 1, x+3 y \geq 3$ Apply linear inequalities to Linear Programming (optimisation, objective function, constraints and feasible solution) Solve practical problems to maximize profit.		Inequalities Solve the inequalities: 1. $2(x-4) \geq 3 x-$ 5 2. $7 x+11>2 x+$ 5 3. $2(x+3)<x+1$ 4. $-5 \leq 2 x-7 \leq 1$
Logical reasoning	Students will be able to: identify true or false statements. form true or false statements. determine validity of an argument.	Teacher Modelling: Explain symbols used in logical reasoning.	Teacher Handbook	Students answer standard questions in Logical Reasoning and from Exam Board past papers.
		YEAR 1/TERM 2		
Polynomial Functions General Characteristics	Students will be able to: Recognise equations of polynomial functions of degree ≤ 4 Simplify the algebra of polynomial functions	Write the remainder and factor theorem and demonstrate how to apply them in simplifying polynomial Remainder Theorem if a polynomial $f(x)$ is divided by $x-$ k, the remainder is $r=f(k)$ E.g. Use the remainder theorem to evaluate the function at $x=-2$	Textbooks Chart showing polynomial functions of degree ≤ 4 a). Linear function b). Quadratic function	The remainder after $2 x^{2}-5 x-1$ is divided by x-3

State and apply the:
a). Remainder theorem
b). Factor theorem

Rational Functions and Partial fraction

$$
f(x)=3 x^{3}+8 x^{2}+5 x-7
$$

c). Cubic function

Factor Theorem
A polynomial $f(x)$ has a factor $(x-k)$ if and
only if $f(k)=0$
E.g. Show that $(x-2) \operatorname{and}(x+3)$
are factors of

$$
f(x)=2 x^{4}+7 x^{3}-4 x^{2}-27 x-18
$$

Teacher to explain to the students that rational function can be written in the form

$$
f(x)=\frac{N(x)}{D(x)}
$$

Where $N(x)$ and $D(x)$ are polynomials and $D(x)$ is not zero.

Solve problems as work examples with the students involving rational functions
E.g. Find the domain of the function

$$
f(x)=\frac{4(x+1)}{x(x-4)}
$$

Decompose into partial fraction

$$
f(x)=\frac{N(x)}{D(x)}
$$

E.g. Write the partial fraction decomposition of

$$
f(x)=\frac{x+7}{x^{2}-x-6}
$$

the remainder after $2 x^{2}-5 x-1$ is divided by
x-5
Use the Factor
Theorem to find the
zeros of $f(x)=x^{3}+$
$4 x^{2}-4 x-16$ given that ($x-2$) is a factor of a polynomial.
use the factor theorem to find the zeros of
$f(x)=x^{3}-6 x^{2}-x+$ 30. Given that ($\mathrm{x}+2$) is a factor of a polynomial.
If $f: x \rightarrow \frac{1}{2+x}$, find the range if the domain is the set $[x: 1 \leq x \leq 5]$

Simplify the following rational functions
$\frac{1}{x-2}+\frac{3}{x+1}$
$\frac{4}{x+2}-\frac{3}{x+3}$
$\frac{2 x}{x^{2}-1} \div \frac{x^{2}-2 x}{x^{2}-2 x+1}$

Resolve $\frac{11-3 x}{x^{2}+2 x-3}$ into partial fractions.

Resolve $\frac{x^{2}-1}{x^{2}-3 x+2}$ into partial fractions.

The Binomial Theorem
Use of the binomial theorem for positive integral index only.

Proof of the theorem not required

Students will be able to: Expand powers of binomials using the binomial theorem.

Generate co-efficient of binomial expansion by Pascal's triangle.

Discuss the binomial theorem with the students which state that for

$$
\begin{aligned}
& (x+y)^{0}=1 \\
& (x+y)^{1}=x+y \\
& (x+y)^{2}=x^{2}+2 x y+y^{2}
\end{aligned}
$$

$$
\text { For any }(x+y)^{n}
$$

$$
\begin{aligned}
& \text { For any }(x+y)^{n} \\
& \qquad(x+y)^{n}=x^{n}+n x^{n-1} y+\cdots+C_{r}^{n} x^{n-r} y^{r}+
\end{aligned}
$$

Illustrate the Pascal's triangle to generate coefficient of binomial expansion $(x+y)^{n}$ where $\mathrm{n}=0,1,2,3,4 \ldots$

Demonstrate with the students work examples on binomial expansion using both methods.
E.g.
a). Write the binomial expansion for the
expression $(x+1)^{3}$
b). Find the binomial coefficient

$(x+1)^{4}$

YEAR 1/TERM 3

Co-ordinate Geometry Loci

Students will be able to:

Describe locus of a point
Sketch the locus of points satisfying given conditions

State the Locus theorem and how it can be used in real life situations or

activities.

Determine the locus of points that will satisfy more than one condition.

Students will be able to:

Plot a point on a plane

Locus Theorems
Locus Theorem 1: The locus of points at a fixed distance, d, from point P is a circle with the given point P as its center and d as its radius.

Locus Theorem 2: The locus of points at a fixed distance, d, from a line, I, is a pair of parallel lines d distance from I and on either side of I .

Locus Theorem 3: The locus of points equidistant from two points is the perpendicular bisector of the line segment determined by the two points.

Locus Theorem 4: The locus of points equidistant from two parallel lines

Locus Theorem 5: The locus of points equidistant from two intersecting lines

Equation to a locus
"The equation of a curve is the relation which exists between the coordinates of all points on the curve, and which does not hold for any point not on the curve"

Finding out the equation to a locus means finding out the relation that holds true between the x and y coordinates of all points on the locus.
Describe the Cartesian coordinate system (x-and - y-axes).

Demonstrate on a graph board to plot points.
distance 4 from the
origin
Example 3
Find the locus of a point such that it is equidistant from two fixed points, $A(1,1)$ and B(2, 4)

Organize students in pairs or groups. Ask simple multiple-choice question.

Define a straight line as a locus of points described by the equation $y=m x+c$ Find the:

- Distance between two points
- Gradient of a line joining two points mid-point of a line segment (mid-poin formula)
- Divide a line segment in a given ratio (externally and internally)
- Equation of a straight line
- Equations of parallel and perpendicular lines
- Perpendicular distance from a line
- Acute angle between two intersecting lines

Students will be able to:

Define a circle as a locus of points that are a fixed distance from a given point (centre)

Solve problems on
i. center and radius given the equation of a circle

Explain the meaning of the variables on the straight line $y=m x+c$
Solve problems on the distance between two given points $\left(x_{1}, y_{2}\right)$ and (x_{2}, y_{2}) using the formula
$\mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
solve the gradient of the two points
$\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right)$ using gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Solve a problem on division of line segment in the ratio $m: n$ at the points
(x_{1}, y_{2}) and (x_{2}, y_{2}) use the relation
$\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$
Solve problems on acute angle between lines

Describe a circle and state the general equation of a circle.

Teacher solves problems on finding the radius

$$
r=\sqrt{g^{2}+f^{2}-c} \text { and the center }(-g,-f)
$$

from the general equation

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Solve problems on tangents and normal to a curve

Give simple class work.
Example.
$A(3,4)$ and $B(5,9)$ are
two point on a straight.
Compute:
a) the distance
b) the slope
c) mid-point

Example.
$A(3,4)$ and $B(5,9)$ are two point on a straight. Compute the equation of the line,

Conduct quizzes and examinations.

Arrange pupils in groups and give them tasks to do.

Example

1). Find the center and radius of the circle $x^{2}+y^{2}-3 x+4 y=8$. 2). Sketch the circle whose general equation is

	ii. equations of tangent and normal to a circle	
Parabolas	Students will be able to: Define a parabola as a locus of points equidistant from a fixed point (focus) and a fixed line (directrix) Find the equation of a parabola Sketch a parabola given turning points, intercepts, and axis of symmetry Find the equations of : i. tangent and normal to a parabola ii. the axis of symmetry	Explain the meaning of a parabola and discusses the shape of the curve when different conditions are given conditions Teacher demonstrates how to sketch a parabola on a graph board Solve problems on tangents and normal to a parabola
Trigonometry Trigonometric Ratios and Rules	Students will be able to: Find sine, cosine and tangent of angles $0^{\circ} \leq \Theta$ $\leq 360^{\circ}$ in general and 0°, $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90° in particular	Use the right triangle to derive the three basic trigonometric ratios and their corresponding reciprocals Explain the use of the right triangle to give the relationships between the trigonometric ratios. $\tan x=\frac{\sin x}{\cos x}$,

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}-3 x+16 y= \\
& \text { 8. } \\
& \text { 3). Find the equation of } \\
& \text { the tangent to the } \\
& \text { circle } x^{2}+y^{2}-2 x+ \\
& 4 y-1=0
\end{aligned}
$$

Conduct quizzes and tests
Ask simple question about parabolas and record their responses on the board.
Organize in groups and give tasks to do in class.

Example 1.
Find the standard form of the equation of the parabola with vertex $(2,3)$ and focus $(1,2)$.

Example 2.
Find the equation of the tangent line to the parabola $y=x^{2}$ at the point $(1,-1)$

Ask students to name the basic trigonometric ratios.

Arrange in groups and give the simple task to do whilst you move

MBSSE's Senior Secondary School Curriculum

Use the basic trigonometric ratios and reciprocals to prove given trigonometric identities

Evaluate the sine, cosine and tangent of negative angles

Convert degrees into radians and vice versa

Apply trigonometric ratios and rules to real-life situations

Trigonometric
Functions and
identities
$\sin x=\cos (90-x)$
$\sec x=\frac{1}{\cos x}$ etc.
Explain the use of the quadrants for the sign of each trigonometric ratio.

Solve simple problems on elevation and depression.

Explain and solve trigonometric equations
Draw graphs of the three basic
trigonometric ratios and explain their nature and use the graphs to solve trigonometric equations
around helping struggling students.

Example.
Evaluate $\cos 225^{\circ}$, $\sin 300^{\circ}$

Example.
Convert 330^{0} into
radian
Convert 4π into degrees

Give class work. Ask a pupil to come to the board and solve a given exercise.

Example.
Solve the equation
$2 \sin x-3 \cos x=1$ for
$0 \leq x \leq 180$

Example.

Sole the equation
$\sin 2 x=\cos 5 x$
Example.
Draw the graph of $y=$ $\sin x$ for $0 \leq x \leq 2 \pi$

Graphs of Trigonometric functions	Students to recognise: the shapes and draw simple graphs of $y=\operatorname{Sin} x$ $y=\operatorname{COS} x$ and Cos solve simple equations. Students will be able to: draw graphs of the type: $Y=a \operatorname{Cos}+b \operatorname{Sin}$ and solve simple equations from graphs.	Teacher Modelling: Model plotting of plots and drawing graphs of $y=\operatorname{Sin} x$ and $y=\operatorname{Cos} x$	Teacher Handbook Graph paper	Standard questions on trigonometric graphs. Probing Questions: Why does the graph of $y=\operatorname{Sin} X$ start at 0 within the range of 0° and 360°. Why does the graph $y=$ Cosx start at ii within the range of 0° and 360°
YEAR 2/TERM 1				
Limits Definition of Limit of a function Limit properties - Limits of constant - Limits of the function x^{k} - Limits of the function x - Limits of the function kx - Limits of the function $\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$ - Limits of rational functions - Limits involving infinity	Students should be able: Define the concept of limits of a function. Apply the limit property to evaluate given functions i). If $\lim _{x \rightarrow a} f(x)=k$ where k is a constant, then $\lim _{x \rightarrow a} k=k$ ii). $\lim _{x \rightarrow a} x^{k}=a^{k}$ iii). $\lim _{x \rightarrow a} x=a$ iv). $\lim _{x \rightarrow a} k x=k a$ v). $\lim _{x \rightarrow a} f(x) \cdot g(x)=$ $\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$ $f(a) \cdot g(a)$ vi). $f(x)=\frac{g(x)}{h(x)}$, then $\lim _{x \rightarrow a} f(x)=\frac{\lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} h(x)}=\frac{g(a)}{h(a)}$	Teacher to explain the concept of limits Discuss with the students the properties or theorem of limits with given examples Example: Find $\lim _{x \rightarrow 2}(x+3)\left(x^{2}-5\right)$ Solve problems with students involving application of limit properties	White board	Evaluate 1. $\lim _{x \rightarrow 2} x^{3}=2^{3}$ 2. $\lim _{x \rightarrow 2} x=2$ 3. $\lim _{x \rightarrow 5} 3 x=3(5)$ 4. $\lim _{x \rightarrow 2}\left(x^{2}-4 x+2\right)$ 5. $\lim _{x \rightarrow 2}\left\{\frac{x^{2}-7 x+10}{x^{2}-4}\right\}$ 6. $\lim _{x \rightarrow \infty}\left\{\frac{\left.5 x^{2}-1\right)}{2 x^{2}+1}\right\}$

$$
\text { vii). } \lim _{n \rightarrow \infty} f(x) .
$$

Introduction to
Derivatives
Find the derivative of simple functions.

Methods of

Differentiation
Differentiate a function using first principle.

Common functions
Product rule of differentiation

Quotient rule differentiation

Students will be able to:
Define the derivative of a function

Find the derivative of simple function.

Students will be able to:

Use the idea of limits to differentiate a function from first principles.

Differentiate common functions

Differentiate a product using product rule.

$$
\begin{aligned}
& \text { Eg. If } y=u v \\
& \qquad \text { then } \frac{d y}{d x} \\
& =u \frac{d v}{d x}+v \frac{d u}{d x}
\end{aligned}
$$

Ask questions about the meaning of a straight line between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Record various responses from pupils on the board.
Gradient $=\frac{\text { increase } y}{\text { increase } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Teacher explains that small increments were added to both x and y then $\frac{\Delta y}{\Delta x}=$ $\underline{f(x+\Delta x)-f(x)}$.

Write the notations of differentiation $\frac{d y}{d x}$ or $f^{1}(x)$ all denoting first differentials

Solve problems with students involving derivative of a function.

Teacher explains the method of finding derivative of function by first principles.

Discuss with students how to differentiate common functions such as: $y=c, y=x^{n}$, etc

Teacher can further discuss with pupils through questioning the meanings of product and quotient of numbers.

Apply the product and quotient rule to Differentiate functions
Eg. If $y=(2 x-2)\left(2 x^{3}\right)$
(Product rule)

Electronics graph Give class work. E.g.
board
Graph boards
Rulers
Graph papers

White board

Textbooks

Differentiate from first principles the function $y=x^{2}$.

Ask pupils to explain how they arrive at the answer

Group pupils and give them class activities on the concepts taught.
E.g., Use the quotient
rule to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
for $y=\frac{2 x}{x+5}$.

Chain rule (also known

 as function of a function)
Successive

 differentiation (higher derivatives)Implicit Differentiation
How to differentiate function of another function

Derivative of Trig

Functions
How to determine the derivative of a trigonometric function with a given function.

$$
\begin{aligned}
& \text { Eg. If } \mathrm{y}=\frac{u}{v} \\
& \text { then } \frac{d y}{d x} \\
& \quad=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
\end{aligned}
$$

Differentiate a function of a function.

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

Differentiate a function
successively. Eg. $\frac{d^{2} y}{d x^{2}}$
Students will be able to:

Use the chain rule to differentiate implicitly

Find the slope of a curve at a given point.
Apply the concept of implicit differentiation to find the equation of a tangent to a curve at a given point.

Students will be able to:
Compute the differentials of trigonometric functions

Apply the techniques of differentiation to calculate the differentials of trigonometric functions

Eg. If $\mathrm{y}=\frac{(2 x-2)}{\left(2 x^{3}\right)}$
(Quotient rule)
Solve problems on Differentiating function of a function.

Teacher to introduce higher or successive differentiation.

Explain the meaning of implicit functions.
$\mathrm{Eg} x^{2}-3 x y^{2}-y=6$
Explain to pupils how to differentiate implicitly

Solve problems on implicit differentiating as work examples

Discuss with pupils the three basic trigonometric ratios $(\sin x \cdot \cos x$ and $\tan x)$ with their corresponding reciprocals $(\csc x \cdot \sec x$ and $\cot x)$ using the righttriangle.

Solve problems on Differentiating trigonometric ratios applying the techniques of differentiation.

Group pupils in pairs and ask them to solve some problems
Eg. Find $\frac{d y}{d x}$ for the
function $2 x^{2}-3 x y=7$.

Ask pupils to list the trigonometric ratios. Record their responses on the board.

Ask pupils to find the differential coefficient of $y=\sin x$. Ask one or two pupils to try and solve it on the board.

Differentiation of natural log functions and exponential functions

Applications of differentiation

Increasing and decreasing functions

Rates of change, velocity and acceleration, Turning points (maximum and minimum)

Points of inflexion
Tangents and normal

Practical problems

Integration

Process of Integration
The general solution of

1. Indefinite integral
2. Definite integral

Differentiate composite trigonometric functions. Differentiate logarithmic functions. Such as $y=$ $\log _{e}(2 x-5)$

Students will be able to

Describe an increasing and decreasing function.

Apply differentiation to determine
I. rates of change
II. velocity and acceleration
III. (maximum and minimum)
IV. Tangents and normal
V. Practical problems

Students will be able to:
define integration as the reverse of differentiation

Determine the integrals of the form x^{n} and $a x^{n}$.
Where n is a fractional, zero, or positive or negative integer.. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$ (indefinite integral)

Solve problems on Differentiating
logarithmic and exponential functions applying the techniques of differentiation.

Teacher to discuss with the students meaning of rate of change, Velocity and acceleration, Turning points (maximum and minimum).
Explain that at a turning point $\frac{d y}{d x}=0$.
Solve problems as work examples on some application of differentiation.

Explain to pupils the meaning of integration and he notation for integration as \int Solve problems on indefinite integrals $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c . \mathrm{C}$ is the arbitrary constant also known as the constant of integration.

Explain the concept of definite integral $[x]_{a}^{b}=(b)-(a)$.

Solve some mathematical problems on the definite and indefinite integrals.

Ask pupils to explain velocity and acceleration.

Give pupils some class work for them to try. Find the maxima and minima points of the function $y=(2 x-$ 1) $(4-x)^{2}$.

Ask pupils to give the difference between differentiation and integration

Give pupils (groups) exercises to try in class. E.g. integrate x^{2}
E.g. find $\int_{1}^{2}(3 x-4) d x$

$$
\begin{aligned}
& {[x]_{a}^{b}=(b)-(a) \text { (Definite }} \\
& \text { integral) }
\end{aligned}
$$

Students will be able to:
Integrate simple
trigonometric
functions $\int \sin x d x$.
Integrate functions by substitution method

Integrate logarithmic functions $\left(\int \ln x d x\right)$

Integrate exponential functions ($\int e^{x} d x$) Logarithmic functions

Integration of exponential functions.

Some applications of integration

Area under curves
Numerical integration
Apply the trapezoidal rule to evaluate the area under a curve

Ask pupils to state the basic trigonometric ratios.

Explain and guide pupils to integrate trigonometric functions.

Discuss with pupils the process of substitution in integration.

Explain how to integrate logarithmic and exponential functions.

Discuss the concept of definite integral to find the area $\left(\int_{a}^{b} f(x) d x\right.$ or $\left.\int_{a}^{b} y d x\right)$ and the volume of a solid obtained by rotating the area bounded by the curve $(V=$ $\left.\pi \int_{a}^{b}(f(x))^{2} d x\right)$

Explain the use of trapezium rule. Solve problems on the applications.

Integrate $\sin x$ and
$\cos x$
E.g. Find $\int \frac{1}{2 x} d x$.

Give class work to pupils whilst you walk around supervising.
E.g. Find the area bounded by the curve $y=4 x^{2}$, the x-axis and the ordinates $\mathrm{x}=0$ and $x=1$

YEAR 2/TERM 2

Students will be able to:

Calculate angles of elevation and depression and other related heights and distances.

Teacher Modelling:	Clinometer Improvised
a practical approach is recommended for this lesson.	clinometers

Students to answer standard questions on angles of elevation and depression.

		students can work outdoors using clinometers or improvised clinometers using protractors and paper tubes.		
Bearings	Students will be able to: understand the concept and language of bearings. represent practical situations using sketches calculate bearings and related distances.	Initial practical approach is recommended. Students work outside and model bearings using Map compasses	Map Compasses Measuring instruments E.g., Trundle wheel Tape Measures	Students answer standard question on bearings.
Circle Theorems	Students to know the circle theorems and be able to do calculations involving circle theorems with reasons	Teacher Modelling: Model the circle theorems involving 1. Angles at the centre and at the circumference 2. Angles in the same segment 3. Angles in a semi-circle 4. Angles in the alternate segment 5. Cyclic quadrilateral 6. Tangents to a circle Mention angle between radius and tangent at point of contact is a right angle. Do calculations involving length of chords and distances of chords from centre of circle.	Teacher Handbook	Students to answer standard questions on circle theorems. Probing Questions: Write answers for a series of questions on circle theorems that have wrong calculations, using wrong theorems with poor, unclear and incomplete reasons. Their task is to rewrite the answers with correct calculations supported by correct theorems and with clear, complete reasons.
Area of sector and length of arc	Students will be able to:	Teacher Modelling	Teacher Handbook	

calculate area of sector and length of arc by use of formulae.

Calculate area of segment using area of triangle $=1 / 2 a b S i n C$

Students to know that when a sector in folded, it forms a cone and appreciate the relationship between:
[a]the area of the sector and the curved surface area of the cone.
[b]the radius of the arc and the slant edge of the cone.

Students to understand the relationship between the length of the arc and the circumference of the base circle of the cone which it makes when folded.

Students will be able to:

Explain that shapes are similar when one is an enlargement of the other and that corresponding sides and angles are all in the same ratio.

Work out ratio of corresponding sides to work out scale factor.

Use circular filter paper to cut out sector for demonstration purpose

Model questions on calculating area of segment.

Area of segment $=$ Area of sector - Area of Triangle

Teacher Modelling

Model the relationships

1. Small length x Scale Factor $=$ Large length
2. Small Area $\times(\text { Scale Factor })^{2}=$ Large Area

Small Volume $\times(\text { Scale factor })^{3}=$ Large Volume

Circular filter paper

Teacher
Handbook

Students answer standard questions on Similarity.

Probing Questions:
What is frustum?
Give me five examples of Frustum you will see
in your local environment.

Calculate length, area and volume of similar figures

Use similarity to calculate volume of frustum

Statics

Resultant and resolving forces into components

Equilibrium of coplanar forces

Types of forces (weight, tension and trust)

Friction and coefficient of friction

Kinematics of a

 particleSpeed, time distance
velocity and acceleration

Students will be able to:
Explain the meaning of statics

Resolve forces and calculate the resultant force

Solve problems on the equilibrium of coplanar forces

Explain friction and resolve a contact force into normal and frictional components

Students will be able to:
Define kinematics and other related terminologies and state their unit of measurement.

Derive the equations of linear motion with uniform acceleration

Solve problems on acceleration due to gravity

YEAR 2/TERM 3

Discuss the meaning of statics.
Explain the resultant of forces and help students to resolve a force into components forces and compute the resultant force.
$R=\sqrt{X^{2}+Y^{2}}$,
where $\mathrm{X}=$ horizontal component
$\mathrm{Y}=$ vertical component
Explain coplanar forces and solve some problems

Discuss friction and demonstrate the resolution of the normal and friction components

Use the relation $F=\mu R$ to solve friction related problems
Explain terminologies on uniform motion (displacement, velocity, acceleration, distance, speed)

Apply the definitions of the terminologies to derive the equations of uniformly accelerated motion. That is

$$
a=\frac{v-u}{t}
$$

$v^{2}=u^{2}+2 a s$.
$s=\left(\frac{u+v}{2}\right) t$.

Organize students in groups and give them class exercises

Example.
A force F acts on a particle at an angle of θ to the horizontal. Find the horizontal and vertical components of F when $F=20 \mathrm{~N}$ and $\theta=20^{\circ}$.

Ask students to explain the types of forces

Ask students to define speed, velocity, distance, displacement, and acceleration. Record their answers on the board

Group them and give work to do in class.

Example.
A particle is moving in a straight line with uniform acceleration. If it travels

	Solve uniform accelerated motion problems graphically	$s=u t+\frac{1}{2} a t^{2}$ Solve problems on uniform motion graphically Apply the concept of uniformly accelerated motion to solve problems on vertical motion.
Dynamics	Students will be able to:	Define and explain rigid body
Moment of inertia of a particle and rigid body Newton's laws of motion	Define a rigid body State and explain Newton's laws of motion	Explain that moment of inertia of rigid body = sum of moments of inertia all the particles present in the body, ie $\begin{aligned} & I=m_{1} r^{2}{ }_{1}+m_{2} r^{2}{ }_{2}++\cdots . . \\ & \rightarrow I=\sum m r^{2} . \end{aligned}$
Motion of two connected particles	Solve problems using Newton's laws of motion	Discuss Newton's laws of motion with practical examples
Momentum and impulse	Explain the meanings of momentum and impulse and how they are related	Establish the relationship between impulse and momentum.
Sum of moments Equilibrium of a lamina under parallel forces	Solve problems on conservation of linear momentum	That is impulse $=$ change momentum, $I=$ $m(v-u)$ Explain the principle of conservation of momentum. That is Total momentum before impact $=$ total momentum after impact or $m_{1} u_{1}+m_{2} u_{2}=$ $m_{1} v_{1}+m_{2} v_{2}$

120 m while increasing speed from
$5 m s^{-1}$ to $25 \mathrm{~ms}^{-1}$ find its acceleration.

Conduct quizzes and tests

Ask students to state and explain the laws of motion

Organize students in groups and administer task to do.
Example.
Find the resultant force which will produce an acceleration of $5 \mathrm{~ms}^{-2}$ for a particle of 6 kg .

Example
A car of mass 800 kg
decelerates from
$20 \mathrm{~ms}^{-1}$ to $5 \mathrm{~ms}^{-1}$. Find
the loss of momentum.

YEAR 3/TERM 1

Vectors
Vectors and scalars

Properties of vectors (representing vectors, equal vectors, null or zero vector)

The magnitude and direction of a vector

Algebra of vectors Triangle law of vector addition

Students will be able to:

Describe vector and scalar quantities

Write the notations for a vector and represent a vector on the rectangular Cartesian co-ordinate system.

Compute the magnitude and direction a vector

Apply the algebra of vectors including:(addition, subtraction and scalar multiplication of vectors)

Use the geometric applications of vectors on
i. the triangle
ii. the parallelogram and other polygons using the laws of addition and subtraction of vectors

Explain vectors and scalars quantities with given examples to each
demonstrate the representation of vectors on a Cartesian plane using the graph

Discusses the various ways of notating a vector. E.g. $\overrightarrow{A B}$ (directed line segment joining two points from A to B) or as components of a point that is $\binom{x}{y}$. Bold type letter is another way of notating a vector.

Calculate the magnitude as
$|\overrightarrow{A B}|=\sqrt{X^{2}+Y^{2}}$ and the direction as $\theta=$ $\tan ^{-1}\left(\frac{Y}{X}\right)$

Discuss the geometric approach to solve vector problems using the triangle law of vector addition.

Ask students to give examples of vector and scalar quantities. Record all responses on the board

Ask them to represent a vector on the board

Give them group work.
Example.
A girl walks $x k m$ due east then zkm north east. Calculate the total distance she has walked and her displacement from her starting point when $x=$ 3 and $z=4$

YEAR 3/TERM 2

Matrices Students will be able

Teacher Modelling
Explain matrices and their applications
Types of matrices eg Row Matrix, column matrix, null matrix, square matrix, diagonal matrix, unit or Identity matrix.

Teacher Handbook	Standard Question on Matrices
Examples of large data that can be stored in a form of a matrix.	Probing Questions: If the determinant of a
matrix is zero, what does that tell you about the matrix.	

inverse of a matrix (limited to 2×2 matrices)	Perform addition, subtraction, scalar multiplication and multiplication of matrices.
Application of matrices (Cramer's rule) to solve simultaneous linear equations in two variables	Solve problems involving -Transposition of Matrices -Determinant of a(2x2) Matrix.
	-Inverse of a (2x2) matrix
-Equality of Matrices	

Transformations

The concept of linear

transformation\end{array} $$
\begin{array}{l}\text { Reflect 2D shapes on graph } \\
\text { paper given the equation of } \\
\text { the line of reflection. }\end{array}
$$\right|\)

Translate a shape on graph paper given the Vector Translation.

Enlarge a shape given the centre of rotation and the scale factor.

Students will be able to: describe transformation.

Model addition, subtraction scalar multiplication and multiplication of matrices.

Model the use of simultaneous equations to solve problems involving equality of matrices.

Teacher Modelling

Model reflection along the x-axis the y-axis, $x=2$, axis and $y=x$ axis etc. Point out to students that the image and object will have the same distance from the line of reflection. Mirrors could be used to support understanding. When reflecting along a diagonal line $[y=x$ or $y=-x]$, point out that you count the number of steps needed to get to the line from any point using the scale on the y-axis and when you reach the line you bend away from the line and count the same number of steps from the line to locate your point. Each point is done one at a time.

When modelling notation explain what clockwise rotation is and use tracing paper to rotate the shape accordingly around the centre of rotation.

When modelling transformation explain the column vector Notation. [${ }^{x} y$]

What is the determinant of a singular matrix?

When a matrix is
multiplied by its determinant, the result is the Unit of Matrix.
True or False?
Convince me.

Standard Questions on Transformation

Probing Questions:
When describing a reflection what are the key elements that must be specified?

When describing a rotation what are the key elements that must be specified?

When describing a translation, what key elements must be specified?

When describing enlargement, what key elements must be specified?
E.g. when asked to translate a shape by vectors [3 ${ }_{2}$]
It means move the shape 3 steps to the right along the x-axis and then 2 steps upwards along the y-axis.

Similarly, a translation by Vector $\left[{ }^{-3}-2\right]$ means move the shape 3 steps to the left along the x -axis and then two steps downwards along the y-axis. Tracing paper can also be used to trace the shape and moved according to the required vector translation.

When modelling enlargement make sure the centre of enlargement and the scale factor are included. The distance from the centre to each point on the shape is multiplied by the scale factor.

A reflection in one axis followed by a reflection in the other axis is the same as a rotation.

Decide whether this statement is sometimes, always or never true.

When a shape is enlarged with a scale factor 3, what happens to its area?

TOPICS FOR PHYSICAL SCIENCES STUDENTS ONLY

		YEAR 1/TERM 1
Logarithmic and exponential Functions	Students will be able to:	Discuss with students the relation between exponential and indices.
	Apply the laws of indices	
	Solve equations involving indices	denoted by $f(x)=a^{x}$
	Apply the laws of logarithms	Where $\mathrm{a}>0, \mathrm{a} \neq 1$ and x is any real number.
	Solve equations involving logarithm and change of base	*Note to the students that in many applications the most convenient choice for a base is the irrational number $e=$ 2.718281828

Graph board Graph paper Blackboard ruler Foot rule Markers Colored chalks
 Without using mathematical table simplify the following
 1). $\left(\frac{16}{81}\right)^{-\frac{3}{4}} \quad$ ii). $16^{-\frac{3}{2}}$

 PencilsFind the value of x in the following
i). $3^{x^{2-1}}=9^{4}$
ii) $3^{2 x}-4\left(3^{x}\right)+3=0$

Simplify the following
i). $\log _{5} 10+\log _{5} 12$

	Draw and interpret graphs of exponential relations	Discuss the definition of logarithms function with base a. le for $x>0$ and $0<a \neq 1 \quad y=$ $\log _{a} x$ if and only if $x=a^{y}$ Hence $f(x)=\log _{a} x$ is the logarithms function with base a. Eg. Simplify $\log _{5} 5^{x}$ Solve problems with students involving exponential (indices) and logarithm equations Eg. Solve $2\left(3^{2 x-5}\right)-4=11$ Solve $\log _{3}(5 x-1)=\log _{3}(x+7)$ Demonstrate the properties of logarithms. $\begin{aligned} & \log _{a}(U V)=\log _{a} U+\log _{a} V \\ & \log _{a}\left(\frac{U}{V}\right)=\log _{a} U-\log _{a} V \\ & \log _{a} U^{n}=n \log _{a} U \end{aligned}$ *Note to the students that there is a natural logarithmic function defined by $f(x)=\log _{a} x=\ln x \quad x>0$		ii) $\log _{3} 24+\log _{3} 15-$ $\log _{3} 10$ Solve the following equation $\begin{array}{r} \log _{10}(5 x+6)=\log _{10}(5 x \\ -6) \end{array}$ ii). $\log _{10}\left(x^{2} 1\right)-2 \log _{10} x=$ 1
Logical reasoning	Students will be able to: identify true or false statements. form true or false statements. determine validity of an argument.	Teacher Modelling: Explain symbols used in logical reasoning.	Teacher Handbook	Students answer standard questions in logical reasoning and from Exam Board past papers.

YEAR 1/TERM 2

Polynomial Functions
General
Characteristics

Students will be able to:

Recognise equations of polynomial functions of degree ≤ 4

Simplify the algebra of polynomial functions

State and apply the:
a). Remainder theorem
b). Factor theorem

Students will be able to:
Recognize rational function as a quotient of two polynomial functions

Apply the four operations on rational functions

Decompose rational functions into partial fractions:
Linear factors in the denominator

Write the remainder and factor theorem and demonstrate how to apply them in simplifying polynomial

Remainder Theorem

if a polynomial $f(x)$ is divided by $x-$
k, the remainder is

$$
r=f(k)
$$

Eg. Use the remainder theorem to evaluate the function at $\mathrm{x}=-2$

$$
f(x)=3 x^{3}+8 x^{2}+5 x-7
$$

Factor Theorem

A polynomial $f(x)$ has a factor $(x-k)$ if and only if $f(k)=0$
Eg. Show that $(x-2)$ and $(x+3)$
are factors of

$$
f(x)=2 x^{4}+7 x^{3}-4 x^{2}-27 x-18
$$

Teacher to explain to the students that rational function can be written in the form

$$
f(x)=\frac{N(x)}{D(x)}
$$

Where $N(x)$ and $D(x)$ are polynomials and $D(x)$ is not zero.

Solve problems as work examples with the students involving rational functions Eg. Find the domain of the function

$$
f(x)=\frac{4(x+1)}{x(x-4)}
$$

Decompose into partial fraction

$$
f(x)=\frac{N(x)}{D(x)}
$$

Textbooks

Chart showing polynomial functions of degree ≤ 4
a). Linear function
b). Quadratic
function
c). Cubic function
i). The remainder after $2 x^{2}-5 x-1$ is divided by x-3
ii). the remainder after $2 x^{2}-5 x-1$ is divided by $x-5$
iii). Use the Factor Theorem to find the zeros of $f(x)=x^{3}+$ $4 x^{2}-4 x-16$ given that ($\mathrm{x}-2$) is a factor of a polynomial.
iv. use the factor theorem to find the zeros of $f(x)=x^{3}$ $\mathbf{6} \boldsymbol{x}^{2}-x+30$. Given that $(x+2)$ is a factor of a polynomial
1). If $f: x \rightarrow \frac{1}{2+x}$, find the range if the domain is the set $[x: 1 \leq x \leq 5]$
2). Simplify the following rational functions
$\frac{1}{x-2}+\frac{3}{x+1}$
$\frac{4}{x+2}-\frac{3}{x+3}$
$\frac{2 x}{x^{2}-1} \div \frac{x^{2}-2 x}{x^{2}-2 x+1}$

Repeated linear factors in the denominator

Quadratic factors in the denominator

Students will be able to:
Apply the laws of indices
Solve equations involving indices

Eg. Write the partial fraction decomposition of

$$
f(x)=\frac{x+7}{x^{2}-x-6}
$$

Discuss with students the relation between exponential and indices.
i.e Exponential function \boldsymbol{f} with base \boldsymbol{a} is denoted by

$$
f(x)=a^{x}
$$

Where $\mathrm{a}>0, \mathrm{a} \neq 1$ and x is any real number.
*Note to the students that in many applications the most convenient choice for a base is the irrational number $e=$ 2.718281828

Resolve $\frac{11-3 \mathrm{x}}{x^{2}+2 \mathrm{x}-3}$ into partial fractions.

Resolve $\frac{x^{2}-1}{x^{2}-3 x+2}$ into partial fractions.

Without using mathematical table simplify the following
1). $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$
ii). $16^{-\frac{3}{2}}$

Find the value of x in the following
i). $3^{x^{2-1}}=9^{4}$
ii) $3^{2 x}-4\left(3^{x}\right)+3=0$

Simplify the following
i). $\log _{5} 10+\log _{5} 12$
ii) $\log _{3} 24+\log _{3} 15-$
$\log _{3} 10$
Solve the following equation

$$
\log _{10}(5 x+6)
$$

$$
=\log _{10}(5 x-6)
$$

ii). $\log _{10}\left(x^{2} 1\right)-$
$2 \log _{10} x=1$

Polynomial Functions
Logarithmic Function

The Binomial Theorem

Use of the binomial theorem for positive integral index only.

Proof of the theorem
not
required

Students will be able to:
Expand powers of binomials using the binomial theorem.

Generate co-efficient of binomial expansion by Pascal's triangle.

Apply the laws of logarithms
Solve equations involving logarithm and change of base
Draw and interpret graphs of exponential relations

YEAR 1/TERM 3

Discuss the definition of logarithms function with base a.
le for $x>0$ and $0<a \neq 1 \quad y=$ $\log _{a} x$ if and only if $x=a^{y}$ Hence $f(x)=\log _{a} x$ is the logarithms function with base a.
Eg. Simplify $\log _{5} 5^{x}$
Solve problems with students involving exponential (indices) and logarithm equations
Eg. Solve $2\left(3^{2 x-5}\right)-4=11$
Solve $\log _{3}(5 x-1)=\log _{3}(x+7)$
Demonstrate the properties of logarithms.

$$
\begin{aligned}
& \log _{a}(U V)=\log _{a} U+\log _{a} V \\
& \log _{a}\left(\frac{U}{V}\right)=\log _{a} U-\log _{a} V \\
& \log _{a} U^{n}=n \log _{a} U
\end{aligned}
$$

*Note to the students that there is a natural logarithmic function defined by

$$
f(x)=\log _{a} x=\ln x \quad x>0
$$

Discuss the binomial theorem which states that for
$(x+y)^{0}=1$
$(x+y)^{1}=x+y$
$(x+y)^{2}=x^{2}+2 x y+y^{2}$
For any $(x+y)^{n}$
$(x+y)^{n}=x^{n}+n x^{n-1} y+\cdots+C_{r}^{n} x^{n-r} y^{r}+$

Chart of Pascal's Use the binomial series triangle to determine the expansion of (2a$3 b)^{5}$

Use the binomial series to determine the expansion of $(2+x)^{7}$

Use Pascal's triangle to expand $(2-y)^{7}$

Illustrate the Pascal's triangle to generate coefficient of binomial expansion
$(x+y)^{n}$ where $\mathrm{n}=0,1,2,3,4 \ldots$
Demonstrate with the students work examples on binomial expansion using both methods.
Examples.
a). Write the binomial expansion for the expression $(x+1)^{3}$
b). Find the binomial coefficient

$$
(x+1)^{4}
$$

Expand $(2 a-3 b)^{5}$ using Pascal's triangle

Determine, using
Pascal's triangle method, the expansion
of $(2 p-3 q)^{5}$

YEAR 2/TERM 1

Limits

Definition of Limit of a function

Limit properties

- Limits of constant
- Limits of the function x^{k}
- Limits of the function x
- Limits of the function kx
- Limits of the function $\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$
- Limits of rational functions
- Limits involving infinity

Students should be able:
Define the concept of limits of a function.

Apply the limit property to evaluate given functions:
i). If $\lim _{x \rightarrow a} f(x)=k$ where k is
a constant, then $\lim k=k$
ii). $\lim _{x \rightarrow a} x^{k}=a^{k}$
iii). $\lim _{x \rightarrow a} x=a$
iv). $\lim _{x \rightarrow a} k x=k a$
v). $\lim _{x \rightarrow a} f(x) \cdot g(x)=$ $\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
$f(a) . g(a)$
vi). $f(x)=\frac{g(x)}{h(x)}$, then
$\lim _{x \rightarrow a} f(x)=\frac{\lim _{x \rightarrow a} g(x)}{\frac{\lim _{x \rightarrow a} h(x)}{f(a)}}=\frac{g(a)}{h(a)}$
vii). $\lim _{n \rightarrow \infty} f(x)$.

Introduction to Derivatives

Find the derivative of simple functions.

Methods of
Differentiation
Differentiate a function using first principle.

Common functions
Product rule of
differentiation
Quotient rule
differentiation
Chain rule (also known as function of a function)

Students will be able to:
Define the derivative of a function

Find the derivative of simple function.

Ask questions about the meaning of a straight line between two
points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
Record various responses from pupils on the board.
Gradient $=\frac{\text { increase } y}{\text { increase } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Teacher explains that small increments were added to both x and y then $\frac{\Delta y}{\Delta x}=$ $\frac{f(x+\Delta x)-f(x)}{\Delta x}$.

Write the notations of differentiation $\frac{d y}{d x}$ or $f^{1}(x)$ all denoting first differentials Solve problems with the students involving derivative of a function.

Teacher explains the method of finding derivative of function by first principles.

Teacher discuss with students how to differentiate common functions such as : $y=c, y=x^{n}$, etc

Teacher can further discuss with pupils through questioning the meanings of product and quotient of numbers.

Apply the product and quotient rule to Differentiate functions
Eg. If $y=(2 x-2)\left(2 x^{3}\right)$
(Product rule)
Eg. If $\mathrm{y}=\frac{(2 x-2)}{\left(2 x^{3}\right)}$
(Quotient rule)

Electronics graph board
Graph boards

Rulers

Graph papers

White board textbooks

Give class work. E.g. Differentiate from first principles the function $y=x^{2}$.
Ask pupils to explain how they arrive at the answer

Group pupils and give them class activities on the concepts taught. E.g. Use the quotient rule to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $y=\frac{2 x}{x+5}$.

Successive

 differentiation (higher derivatives)Implicit Differentiation
How to differentiate function of another function

Derivative of Trig

Functions
How to determine the derivative of a trigonometric function with a given function.

Differentiation of natural log functions

$$
\begin{aligned}
& \text { then } \frac{d y}{d x} \\
& =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
\end{aligned}
$$

Differentiate a function of a
function.

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

Differentiate a function
successively. Eg. $\frac{d^{2} y}{d x^{2}}$
Students will be able to:
Use the chain rule to differentiate implicitly

Find the slope of a curve at a given point.

Apply the concept of implicit differentiation to find the equation of a tangent to a curve at a given point.

Students will be able to:
Compute the differentials of trigonometric functions

Apply the techniques of differentiation to calculate the differentials of trigonometric functions
x

Solve problems on Differentiating function of a function.

Teacher to introduce higher or successive differentiation.

Explain the meaning of implicit functions.
Eg $x^{2}-3 x y^{2}-y=6$
Explain to pupils how to differentiate implicitly
Solve problems on implicit Differentiating as work examples

Discuss with pupils the three basic trigonometric ratios $(\sin x \cdot \cos x$ and $\tan x)$ with their corresponding reciprocals $(\csc x \cdot \sec x$ and $\cot x)$ using the righttriangle.

Solve problems on Differentiating trigonometric ratios applying the techniques of differentiation.

Group pupils in pairs and ask them to solve some problems
Eg. Find $\frac{d y}{d x}$ for the function $2 x^{2}-3 x y=7$.

Ask pupils to list the trigonometric ratios. Record their responses on the board.

Ask pupils to find the differential coefficient of $y=\sin x$. Ask one or two pupils to try and solve it on the board
and exponential functions

Applications of

 differentiationIncreasing and decreasing functions Rates of change, velocity and acceleration, turning points (maximum and minimum)

Points of inflexion Tangents and normal practical problems Integration

Process of Integration
The general solution of Indefinite integral.

Definite integral

Techniques of integration

Differentiate composite trigonometric functions.

Differentiate logarithmic functions. Such as $y=$ $\log _{e}(2 x-5)$

Students will be able to:

Describe an increasing and decreasing function.

Apply differentiation to determine rates of change velocity and acceleration (maximum and minimum), tangents and normal practical problems

Students will be able to:

define integration as the reverse of differentiation

Determine the integrals of the form x^{n} and $a x^{n}$. Where n is a fractional, zero, or positive or negative integer $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$ (indefinite integral)
$[x]_{a}^{b}=(b)-(a)$ (definiteintegral) Students will be able to:

Solve problems on Differentiating
logarithmic and exponential functions applying the techniques of differentiation.

Teacher to discuss with the students meaning of rate of change, Velocity and acceleration, Turning points (maximum and minimum).
Explain that at a turning point $\frac{d y}{d x}=0$.
Solve problems as work examples on some application of differentiation.

Explain to pupils the meaning of integration and he notation for integration as \int Solve problems on indefinite integrals $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c . \mathrm{C}$ is the arbitrary constant also known as the constant of integration.

Explain the concept of definite
integral $[x]_{a}^{b}=(b)-(a)$.
Solve some mathematical problems on the definite and indefinite integrals.

Ask pupils to state the basic trigonometric ratios.

Ask pupils to explain velocity and acceleration.

Give pupils some class work for them to try. Find the maxima and minima points of the function $y=(2 x-$ 1) $(4-x)^{2}$.

Ask pupils to give the difference between differentiation and integration

Give pupils (groups) exercises to try in class.
E.g. integrate x^{2}
E.g. find $\int_{1}^{2}(3 x-4) d x$

Integrate $\sin x$ and $\cos x$

Introduction to integration of	Integrate simple trigonometric	Explain and guide pupils to integrate trigonometric functions	Eg. Find $\int \frac{1}{2 x} d x$.
Trigonometric	functions $\int \sin x d x$.	Discuss with pupils the process of substitution in integration.	
Integration by substitution	Integrate functions by substitution method	Explain how to integrate logarithmic and exponential functions.	
Integration of Logarithmic functions	Integrate logarithmic functions ($\left(\int \ln x d x\right)$		
Integration of exponential functions.	Integrate exponential functions ($\int e^{x} d x$)		
Some applications of integration	Students will be able to:	Discuss the concept of definite integral to find the area $\left(\int_{a}^{b} f(x) d x\right.$ or $\left.\int_{a}^{b} y d x\right)$ and	Give class work to pupils whilst you walk
Area under curves	Apply integration to calculate areas under curves	the volume of a solid obtained by rotating the area bounded by the curve $(V=$	E.g. Find the area bounded by the curve
Numerical integration	Apply the trapezoidal rule to evaluate the area under a curve	$\left.\pi \int_{a}^{b}(f(x))^{2} d x\right)$ Explain the use of trapezium rule. Solve problems on the applications.	$y=4 x^{2}$, the x-axis and the ordinates $x=0$ and $\mathrm{x}=1$
		YEAR 2/TERM 2	
Statics	Students will be able to:	Discuss the meaning of statics.	Organize them in group and give them class
Resultant and resolving forces into components	Explain the meaning of statics	Explain the resultant of forces and help students to resolve a force into components forces and compute the resultant force.	exercises Example.
Equilibrium of coplanar forces	Resolve forces and calculate the resultant force Solve problems on the	$\begin{aligned} & R=\sqrt{X^{2}+Y^{2}}, \\ & \text { where } X=\text { horizontal component } \\ & =\text { vertical component } \end{aligned}$	A force F acts on a particle at an angle of θ to the horizontal. Find the horizontal and
Types of forces (weight, tension and trust)	equilibrium of coplanar forces	Explain coplanar forces and solve some problems	vertical components of F when $\mathrm{F}=20 \mathrm{~N}$ and $\theta=20^{\circ}$.

Friction and coefficien of friction

Kinematics of a particle

Speed, time distance velocity and acceleration.

Dynamics

Moment of inertia of a particle and rigid body

Newton's laws of

 motionExplain friction and resolve a contact force into normal and frictional components

Students will be able to:
Define kinematics and other related terminologies and state their unit of measurement.

Derive the equations of linear motion with uniform acceleration

Solve problems on acceleration due to gravity Solve uniform accelerated motion problems graphically

Students will be able to:

Define a rigid body
State and explain Newton's
laws of motion
Solve problems using Newton's laws of motion

Discuss friction and demonstrate the resolution of the normal and friction components

Use the relation $F=\mu R$ to solve friction related problems

YEAR 2/TERM 3

Explain terminologies on uniform motion (displacement, velocity, acceleration, distance, speed)

Apply the definitions of the terminologies to derive the equations of uniformly accelerated motion. That is

$$
a=\frac{v-u}{t}
$$

$v^{2}=u^{2}+2 a s$
$s=\left(\frac{u+v}{2}\right) t$.
$s=u t+\frac{1}{2} a t^{2}$.
Solve problems on uniform motion graphically

Apply the concept of uniformly accelerated motion to solve problems on vertical motion.

Define and explain rigid body
Explain that moment of inertia of rigid body = sum of moments of inertia all the particles present in the body, ie

$$
\begin{aligned}
& I=m_{1} r^{2}{ }_{1}+m_{2} r^{2}{ }_{2}++\cdots . . \\
& \rightarrow I=\sum m r^{2} .
\end{aligned}
$$

Ask students to explain the types of forces

Ask students to define speed, velocity, distance, displacement, and acceleration. Record their answers on the board.

Group them and give work to do in class.

Example.
A particle is moving in a straight line with uniform acceleration. If it travels 120m while increasing speed from
$5 \mathrm{~ms}^{-1}$ to $25 \mathrm{~ms}^{-1}$ find its acceleration.

Conduct quizzes and tests

Ask students to state and explain the laws of motion

Organize students in groups and administer task to do.

Example.

Motion of two connected particles	Explain the meanings of momentum and impulse and how they are related
Momentum and impulse	Solve problems on conservation of linear momentum
Sum of moments	
Equilibrium of a lamina under parallel forces	

Discuss Newton's laws of motion with practical examples

Establish the relationship between impulse and momentum.
That is impulse $=$ change momentum, $I=$ $m(v-u)$

Explain the principle of conservation of momentum. i.e. total momentum before impact $=$ total momentum after impact or $m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$

Find the resultant force which will produce an acceleration of $5 \mathrm{~ms}^{-2}$ for a particle of 6 kg .

Example
A car of mass 800 kg
decelerates from
$20 \mathrm{~ms}^{-1}$ to $5 \mathrm{~m} s^{-1}$. Find the loss of momentum.

Vectors

Vectors and scalars
Properties of vectors (representing vectors, equal vectors, null or zero vector)

The magnitude and direction of a vector

Algebra of vectors
Triangle law of vector addition

Students will be able to:

Describe vector and scalar quantities

Write the notations for a vector and represent a vector on the rectangular Cartesian co-ordinate system.

Compute the magnitude and direction a vector

Apply the algebra of vectors including:(addition, subtraction and scalar multiplication of vectors)

Use the geometric applications of vectors on the triangle

YEAR 3/TERM 1

Explain vectors and scalars quantities with given examples to each

Demonstrate the representation of vectors on a Cartesian plane using the graph

Discusses the various ways of notating a vector. Eg $\overrightarrow{A B}$ (directed line segment joining two points from A to B) or as components of a point that is $\binom{x}{y}$. Bold type letter is another way of notating a vector.

Calculate the magnitude as
$|\overrightarrow{A B}|=\sqrt{X^{2}+Y^{2}}$ and the direction as $\theta=$ $\tan ^{-1}\left(\frac{Y}{X}\right)$

Discuss the geometric approach to solve vector problems using the triangle law of vector addition.

Ask students to give examples of vector and scalar quantities. Record all responses on the board

Ask them to represent a vector on the board

Give them group work.
Example.
A girl walks $x k m$ due east then zkm northeast. Calculate the total distance she has walked and her displacement from her starting point when $x=$ 3 and $z=4$

Use the laws of addition and subtraction of vectors

YEAR 3/TERM 2				
Matrices	Students will be able to:	Teacher Modelling	Teacher Handbook	Standard Question on Matrices
Operations on matrices	Explain what matrix is and their applications.	Explain matrices and their applications	Examples of large	Probing Questions:
Finding the determinant and	Identify the order of a matrix and the types of matrices.	Types of matrices eg Row Matrix, column matrix, null matrix, square matrix, diagonal matrix, unit or Identity matrix.	data that can be stored in a form of a matrix.	If the determinant of a matrix is zero, what does that tell you about
Inverse of a matrix (limited to 2×2 matrices)	Perform addition, subtraction, scalar multiplication and multiplication of matrices.	Model addition, subtraction scalar multiplication and multiplication of matrices. Model the use of simultaneous equations to		the matrix. What is the determinant of a singular matrix?
Application of matrices (Cramer's rule) to solve simultaneous linear equations in two variables	Solve problems involving - Transposition of Matrices - Determinant of a(2x2) Matrix. -Inverse of a (2x2) matrix -Equality of Matrices	solve problems involving equality of matrices.		When a matrix is multiplied by its determinant, the result is the Unit of Matrix. True or False? Convince me.

Resources

Measuring tapes
Metre sticks
Trundle wheels to measure long distances
Masses (1kg, 2kg etc)
Stop watches
Vanguards
Permanent markers (different colours)
Classroom displays
Class sets of rulers, protractors, compasses and pencils

MBSSE's Senior Secondary School Curriculum
Glue sticks
Sets of Geometrical models (3-D shapes)
Blue tac (to support classroom displays/charts)

Board Rulers, Protractors and compasses.

Interactive whiteboards
Playing cards
Spinners (for probability)
Tape Measures
Meter Rule
Height Measures
Weights
Callipers
2D Shape sets
Assorted coloured Dice
Vanguard Coloured Cards
Scale
3D Translucent Shapes
Strings and Threads

[^0]: Use formula Exterior angle $=\underline{360}$

 No of sides

